Clinical significance of choosing the optimal glomerular filtration rate equation in patients with coronary artery disease referred for myocardial revascularization

Authors: Osipova A.I., Keren M.A.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2024-18-3-286-297

For citation: Osipova A.I., Keren M.A. Clinical significance of choosing the optimal glomerular filtration rate equation in patients with coronary artery disease referred for myocardial revascularization. Creative Cardiology. 2024; 18 (3): 286–297 (in Russ.). DOI: 10.24022/1997-3187-2024-18-3-286-297

Received / Accepted:  12.04.2024 / 17.06.2024

Keywords: coronary artery disease chronic kidney disease renal dysfunction revascularization coronary artery bypass grafting glomerular filtration rate creatinine clearance equation



Subscribe 🔒

 

Abstract

Сhronic kidney disease (CKD) significantly worsens prognosis in patients with coronary artery disease (CAD) referred for myocardial revascularization. In clinical practice for assessment of the risk of adverse outcomes in such patients are often used special glomerular filtration rate (GFR) equations, which allow to quite accurately determine the presence and severity of CKD. However, all these equations have certain limitations. It remains unknown to date which of them most accurately reflects renal function. The aim of this article is to review the literature and summarize the available data regarding the selection of the optimal GFR equation for predicting adverse postoperative outcomes in patients with CAD referred for myocardial revascularization.

References

  1. Nowrouzi R., Sylvester C.B., Treffalls J.A., Zhang Q., Rosengart T.K., Coselli J.S. et al. Chronic kidney disease, risk of readmission, and progression to end-stage renal disease in 519,387 patients undergoing coronary artery bypass grafting. JTCVS Open. 2022; 12: 147–157. DOI: 10.1016/j.xjon.2022.08.013
  2. Warrens H., Banerjee D., Herzog C.A. Cardiovascular complications of chronic kidney disease: an introduction. Eur. Cardiol. Rev. 2022; 17: 13. DOI: 10.15420/ECR.2021.54
  3. Keren M.A., Sigaev I.Yu., Osipova A.I., Volkovskaya I.V., Zavalikhina T.V., Avakova S.A. et al. Impact of chronic kidney disease on type of coronary artery bypass grafting and on the structure of postoperative complications in patients with coronary artery disease. Journal of Thoracic and Cardiovascular Surgery. 2023; 65 (4): 414–423 (in Russ.). DOI: 10.24022/0236-2791-2023-65-4-414-423
  4. Galougahi K.K., Chadban S., Mehran R., Bangalore S., Chertow G.M., Ali Z.A. Invasive management of coronary artery disease in advanced renal disease. Kidney Int. Reports. 2021; 6 (6): 1513–1524. DOI: 10.1016/j.ekir.2021.02.041
  5. Nankivell B.J., Nankivell L.F.J., Elder G.J., Gruenewald S.M. How unmeasured muscle mass affects estimated GFR and diagnostic inaccuracy. EClinicalMedicine. 2020; 29–30: 100662. DOI: 10.1016/j.eclinm.2020.100662
  6. Lees J.S., Shlipak M.G. Age-adapted eGFR thresholds underestimate the risks beyond kidney failure associated with CKD in older populations. J. Am. Geriatr. Soc. 2022; 70 (12): 3660–3664. DOI: 10.1111/JGS.18046
  7. Lees J.S., De La Mata N.L., Sullivan M.K., Wyld M.L., Rosales B.M., Cutting R. et al. Sex differences in associations between creatinine and cystatin C-based kidney function measures with stroke and major bleeding. Eur. Stroke J. 2023; 8 (3): 756–768. DOI: 10.1177/23969873231173282
  8. Clinical recommendations. Chronic kidney disease (CKD). Nephrology. 2021; 25 (5): 10–82 (in Russ.).
  9. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Off. J. Int. Soc. Nephrol. 2013; 3 (1): 1–150. DOI: 10.1038/kisup.2012
  10. Yarustovskiy M.B., Abramyan M.V., Begachev A.V., Nazarov N.S., Nazarova E.I., Mironenko V.A., Tsaloeva A.P. Management of patients with acute kidney injury as part of the multiple organ dysfunction syndrome after open heart surgery. Creative Cardiology. 2023; 17 (4): 544– 553 (in Russ.). DOI: 10.24022/1997-3187-2023-17-4-544-553
  11. Kudzoeva Z.F., Bockeria O.L., Petrosyan K.V., Yarustovskiy M.B., Sanakoev M.K. Boyadzhyan G.G. Management of patients with end-stage renal failure and coronary artery disease requiring surgical revascularization. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2020; 21 (S6): 84 (in Russ.).
  12. Mamedova S.K., Merzlyakov V.Yu., Klyuchnikov I.V., Tetvadze I.V. Long-term results of coronary artery bypass grafting on a beating heart and with cardiopulmonary bypass in patients with chronic coronary artery disease. Russian Journal of Thoracic and Cardiovascular Surgery. 2022; 64 (6): 596–604 (in Russ.). DOI: 10.24022/0236-2791-2022-64-6-596-604.
  13. Moiseev V.C., Mukhin N.A., Smirnov A.V., Kobalava J.D., Bobkova I.N., Villevalde S.V. et al. Cardiovascular risk and chronic kidney disease: cardio-nephroprotection strategies. Russ. J. Cardiol. 2014; 8: 7–37 (in Russ.). DOI: 10.15829/1560-4071-2014-8-7-37.
  14. Cockcroft D.W., Gault M.H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16 (1): 31–41. DOI: 10.1159/000180580
  15. Levey A.S., Greene T., Kusek J.W., Beck G.J. A simplified equation to predict glomerular filtration rate from serum creatinine. J. Am. Soc. Nephrol. 2000; 11: 155A.
  16. Levey A.S., Coresh J., Greene T., Stevens L.A., Zhang Y.L., Hendriksen S. et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006; 145 (4): 247–254. DOI: 10.7326/0003-4819-145-4-200608150-00004
  17. Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F., 3rd, Feldman H.I., Kusek J.W. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009; 150 (9): 604–612. DOI: 10.7326/0003-4819-150-9-200905050-00006
  18. Inker L.A., Eneanya N.D., Coresh J., Tighiouart H., Wang D., Sang Y. et al. New creatinine- and cystatin c–based equations to estimate GFR without race. N. Engl. J. Med. 2021; 385 (19): 1737–1749. DOI: 10.1056/NEJMoa2102953
  19. Matsushita K., Mahmoodi B.K., Woodward M., Emberson J.R., Jafar T.H., Jee S.H. et al. Comparison of risk prediction using the CKD- EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA. 2012; 307 (18): 1941–1951. DOI: 10.1001/ JAMA.2012.3954
  20. Nashef S.A., Roques F., Sharples L.D., Nilsson J., Smith C., Goldstone A.R., Lockowandt U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012; 41 (4): 734–745. DOI: 10.1093/EJCTS/EZS043
  21. Shahian D.M., Jacobs J.P., Badhwar V., Kurlansky P.A., Furnary A.P., Cleveland J.C., Jr. et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 1–background, design considerations, and model development. Ann. Thorac. Surg. 2018; 105 (5): 1411– 1418. DOI: 10.1016/j.athoracsur.2018.03.002
  22. O’Brien S.M., Feng L., He X., Xian Y., Jacobs J.P., Badhwar V. et al. The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2–statistical methods and results. Ann. Thorac. Surg. 2018; 105 (5): 1419–1428. DOI: 10.1016/j.athoracsur.2018.03.003
  23. Gelsomino S., Bonacchi M., Lucà F., Barili F., Del Pace S., Parise O. et al. Comparison between three different equations for the estimation of glomerular filtration rate in predicting mortality after coronary artery bypass. BMC Nephrol. 2019; 20 (1): 371. DOI: 10.1186/ S12882-019-1564-Y
  24. Ram E., Peled Y., Karni E., Mazor Dray E., Cohen H., Raanani E., Sternik L. The predictive value of five glomerular filtration rate formulas for long-term mortality in patients undergoing coronary artery bypass grafting. J. Card. Surg. 2022; 37 (9): 2663–2670. DOI: 10.1111/ JOCS.16667
  25. Jo J.Y., Ryu S.A., Kim J.I., Lee E.H., Choi I.C. Comparison of five glomerular filtration rate estimating equations as predictors of acute kidney injury after cardiovascular surgery. Sci. Reports. 2019; 9 (1): 11072. DOI: 10.1038/s41598-019-47559-w
  26. Li Z., Ge W., Han C., Lv M., He Y., Su J. et al. Prognostic values of three equations in estimating glomerular filtration rates of patients undergoing off-pump coronary artery bypass grafting. Ther. Clin. Risk. Manag. 2020; 16: 451–459. DOI: 10.2147/TCRM.S248710
  27. Rule A.D., Larson T.S., Bergstralh E.J., Slezak J.M., Jacobsen S.J., Cosio F.G. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 2004; 141 (12): 929–937. DOI: 10.7326/0003-4819-141-12-200412210-00009
  28. Pottel H., Hoste L., Dubourg L., Ebert N., Schaeffner E., Eriksen B.O. et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 2016; 31 (5): 798–806. DOI: 10.1093/NDT/GFV454
  29. Schaeffner E.S., Ebert N., Delanaye P., Frei U., Gaedeke J., Jakob O. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 2012; 157 (7): 471–481. DOI: 10.7326/0003-4819-157-7-201210020-00003
  30. Björk J., Grubb A., Sterner G., Nyman U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand. J. Clin. Lab. Invest. 2011; 71 (3): 232–239. DOI: 10.3109/00365513.2011.557086
  31. Nyman U., Grubb A., Larsson A., Hansson L.O., Flodin M., Nordin G. et al. The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin. Chem. Lab. Med. 2014; 52 (6): 815–824. DOI: 10.1515/CCLM-2013-0741
  32. Lin Y.W., Huang J.L., Wei X.B., Jiang M., Ran P., Li J. et al. Estimated glomerular filtration rate derived from different formulas and prognosis in acute coronary syndrome: Findings from the improving care for cardiovascular disease in China-acute coronary syndrome project. Am. J. Med. Sci. 2022; 364 (5): 565–574. DOI: 10.1016/J.AMJMS.2021.10.034
  33. Ballo P., Chechi T., Spaziani G., Fibbi V., Conti D., Ferro G. et al. Prognostic comparison between creatinine-based glomerular filtration rate formulas for the prediction of 10-year outcome in patients with non-ST elevation acute coronary syndrome treated by percutaneous coronary intervention. Eur. Hear. J. Acute Cardiovasc. Care. 2018; 7 (8): 689–702. DOI: 10.1177/2048872617697452
  34. Ram E., Beckerman P., Segev A., Shlomo N., Atlas-Lazar A., Sternik L., Raanani E. The predictive value of creatinine clearance for mortality in patients undergoing revascularization. J. Cardiothorac. Surg. 2021; 16 (1): 120. DOI: 10.1186/S13019-021-01502-1/TABLES/5
  35. Hébert M., Amr G., Cossette M., Cartier R. Reassessment of kidney function equations in predicting long-term survival in cardiac surgery. J. Card. Surg. 2020; 35 (10): 2550–2558. DOI: 10.1111/JOCS.14834
  36. Malavasi V.L., Valenti A.C., Ruggerini S., Manicardi M., Orlandi C., Sgreccia D. et al. Kidney function according to different equations in patients admitted to a cardiology unit and impact on outcome. J. Clin. Med. 2022; 11
  37. Protasov K.V., Donirova O.S., Batunova E.V. Cystatin C-based estimated glomerular filtration rate after percutaneous coronary intervention in the prediction of inhospital mortality in acute myocardial infarction. Russ. J. Cardiol. 2021; 26 (12): 4642 (in Russ.). DOI: 10.15829/1560-4071-2021-4642
  38. Tolomeo P., Butt J.H., Kondo T., Campo G., Desai A.S., Jhund P.S. et al. Importance of cystatin C in estimating glomerular filtration rate: the PARADIGM-HF trial. Eur. Heart J. 2023; 44 (24): 2202–2212. DOI: 10.1093/EURHEARTJ/EHAD210
  39. West M., Kirby A., Stewart R.A., Blankenberg S., Sullivan D., White H.D. et al. Circulating cystatin C is an independent risk marker for cardiovascular outcomes, development of renal impairment, and long-term mortality in patients with stable coronary heart disease: the LIPID study. J. Am. Heart Assoc. 2022; 11 (5): e020745. DOI: 10.1161/JAHA.121.020745
  40. Dardashti A., Nozohoor S., Algotsson L., Ederoth P., Bjursten H. The predictive value of s-cystatin C for mortality after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2016; 152 (1): 139–146. DOI: 10.1016/J.JTCVS.2016.02.070
  41. Mooney J.F., Croal B.L., Cassidy S., Lee V.W., Chow C.K., Cuthbertson B.H., Hillis G.S. Relative value of cystatin C and creatinine-based estimates of glomerular filtration rate in predicting long-term mortality after cardiac surgery: a cohort study. BMJ. Open. 2019; 9 (9): e029379. DOI: 10.1136/BMJOPEN-2019-029379
  42. Inker L.A., Schmid C.H., Tighiouart H., Eckfeldt J.H., Feldman H.I., Greene T. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012; 367 (1): 20–29. DOI: 10.1056/NEJMoa1114248
  43. Pottel H., Delanaye P., Schaeffner E., Dubourg L., Eriksen B.O., Melsom T. et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol. Dial. Transplant. 2017; 32 (3): 497–507. DOI: 10.1093/NDT/GFW425
  44. Golukhova E.Z., Keren M.A., Zavalikhina T.V., Bulaeva N.I., Marapov D.I., Sigaev I.Yu. et al. Prognosis of early outcomes after isolated coronary bypass surgery: results of a singlecenter cohort study. Annals of the Russian Academy of Medical Sciences. 2023; 78 (3): 176–184 (in Russ.). DOI: 10.15690/vramn8086
  45. Golukhova E.Z., Keren M.A., Zavalikhina T.V., Bulaeva N.I., Akatov D.S., Sigaev I.Yu. et al. Potential of machine learning methods in operational risk stratification in patients with coronary artery disease scheduled for coronary bypass surgery. Russian Journal of Cardiology. 2023; 28 (2): 5211 (in Russ.). DOI: 10.15829/1560-4071-2023-5211

About Authors

  • Alina I. Osipova, Postgraduate; ORCID
  • Milena A. Keren, Dr. Med. Sci., Professor, Senior Researcher; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery