Own results of histological study of parasympathetic ganglia: search for safe and effective zones for cardiac deparasympathization

Authors: Dvali M.L., Serguladze S.Yu., Sopov O.V., Kvasha B.I., Khugaev G.A.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18-4-415-425

For citation: Dvali M.L., Serguladze S.Yu., Sopov O.V., Kvasha B.I., Khugaev G.A.Own results of histological study of parasympathetic ganglia: search for safe and effective zones for cardiac deparasympathization. Creative Cardiology. 2024; 18 (4): 415–425 (in Russ.). DOI: 10.24022/1997-3187-2024-18-4-415-425

Received / Accepted:  10.10.2024 / 14.11.2024

Keywords: parasympathetic ganglia cardiac deparasympathization histological study radiofrequency ablation heart innervation bradyarrhythmias

Download
Full text:  

 

Abstract

Objective: to determine the patterns of anatomical localization of ganglionic structures involved in the innervation of the heart, based on the study of histological examination results of cardiac tissues taken post-mortem from a group of patients, in order to achieve safe and effective cardiac deparasympathization.

Materials and methods. The study utilized heart tissue samples obtained post-mortem from five patients with no history of radiofrequency ablation or cardiac arrhythmias. Histological examinations were performed using hematoxylin and eosin staining. Based on the findings, specific sites and strategies for applying radiofrequency impacts were determined to achieve effective cardiac deparasympathization.

Results. The investigation of cardiac innervation began with mapping the anatomical entry points of the left vagus nerve branches, located anterior to the left superior pulmonary vein and posterior to the left atrial appendage (the Ridge area). Epicardially, a nerve trunk (NT) was identified in this region. This NT extends along the oblique vein of the left atrium, corresponding to Marshall’s ligament, toward the coronary vein. Upon reaching the orifice of the coronary sinus, it diverges in two directions: one branch pierces the interatrial septum toward the atrioventricular node, and the other proceeds toward the right atrium along the interatrial groove (Waterston’s groove), where it joins with branches of the right vagus nerve. These findings enabled the determination of safe and effective zones for cardiac denervation.

Conclusion. The histological study of cardiac tissues revealed specific anatomical features of parasympathetic ganglia localization and established key principles for a neuromodulation protocol. Implementing radiofrequency strategies based on these histological insights may enhance the effectiveness of bradyarrhythmia treatments while minimizing the risks of complications and recurrences.

References

  1. Golukhova E.Z., Milievskaya E.B., Filatov A.G., Bockeria L.A. (Eds.) Arrhythmology – 2021. Heart rhythm and conduction disorders. Moscow; 2023: 16–20 (in Russ.).
  2. Golukhova E.Z., Milievskaya E.B., Filatov A.G., Semenov V.Yu., Pryanishnikov V.V. Arrhythmology – 2022. Heart rhythm and conduction disorders. Мoscow; 2023 (in Russ.).
  3. Golukhova E.Z. Report on the scientific and medical work of the Bakuolev National Medical Research Center for Cardiovascular Surgery of the Ministry of Health of Russian Federation for 2023 and Development Prospects. The Bulletin of Bakuolev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): 5–141 (in Russ.). DOI: 10.24022/1810-0694-2024-25S
  4. Aksu T., Morillo C.A., Po S.S. Cardioneuroablation for vagally mediated bradyarrhythmias: are we there yet? Heart Rhythm. 2022; 19 (8): 1253–1254. DOI: 10.1016/j.hrthm.2022.05.019
  5. Nemkov A.S., Sidorchuk A.V. Heart rate disturbances after mitral valve replacement. Grekov’s Bulleten of Surgery. 2009; 168 (1):21–26 (in Russ.).
  6. Qin M., Zhang Y., Liu X., Jiang W.F., Wu S.H., Po S. Atrial ganglionated plexus modification: a novel approach to treat symptomatic sinus bradycardia. JACC Clin. Electrophysiol. 2017; 3 (9): 950–959. DOI: 10.1016/j.jacep.2017.03.010
  7. D’Ascenzi F., Solari M., Anselmi F., Valentini F., Barbati R., Palmitesta P. et al. Electrocardiographic changes induced by endurance training and pubertal development in male children. Am. J. Cardiol. 2017; 119 (5): 795–801. DOI: 10.1016/j.amjcard.2016.11.017
  8. Higuchi K., Yamauchi Y., Hirao K. Superior vena cava isolation in ablation of atrial fibrillation. J. Atr. Fibrillation. 2014; 7 (1): 1032. DOI: 10.4022/jafib.1032
  9. Pachon J.C., Pachon E.I., Pachon C.T. Cardioneuroablation for treating functional bradyarrhythmias: how much is enough? Indian Pacing Electrophysiol. J. 2021; 21 (6): 335–336. DOI: 10.1016/j.ipej.2021.10.005
  10. Chiou C.W., Eble J.N., Zipes D.P. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes: the third fat pad. Circulation. 1997; 95 (11):2573–2584. DOI: 10.1161/01.CIR.95.11.2573
  11. Arrowood J.A., Goudreau E., Minisi A.J., Davis A.B., Mohanty P.K. Evidence against reinnervation of cardiac vagal afferents after human orthotopic cardiac transplantation. Circulation. 1995;92 (3): 402–408. DOI: 10.1161/01.CIR.92.3.402
  12. Armour J.A., Murphy D.A., Yuan B.X., Macdonald S., Hopkins D.A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997; 247 (2): 289–298. DOI: 10.1002/(SICI)1097-0185(199702)247:2<289::AID-AR15>3.0.CO;2-L
  13. Hanna P., Rajendran P.S., Ajijola O.A., Vaseghi M., Armour J.A., Ardell J.L., Shivkumar K. Cardiac neuroanatomy – imaging nerves to define functional control. Auton. Neurosci. 2017; 207: 48–58. DOI: 10.1016/j.autneu.2017.07.008
  14. Kim M.Y., Coyle C., Tomlinson D.R., Sikkel M.B., Sohaib A., Luther V. et al. Ectopy-triggering ganglionated plexuses ablation to prevent atrial fibrillation: GANGLIA-AF study. Heart Rhythm. 2022; 19 (4): 516–524. DOI: 10.1016/j.hrthm.2021.12.010
  15. Avazzadeh S., McBride S., O’Brien B., Coffey K., Elahi A., O’Halloran M. et al. Ganglionated plexi ablation for the treatment of atrial fibrillation. J. Clin. Med. 2020; 9 (10): 3081. DOI: 10.3390/jcm9103081
  16. Markman T.M., Khoshknab M., Santangeli P., Marchlinski F.E., Nazarian S. Feasibility of computed tomography-guided cardioneuroablation for atrial fibrillation. JACC Clin. Electrophysiol. 2022; 8 (11): 1449–1450. DOI: 10.1016/j.jacep.2022.06.004
  17. Langmuur S.J.J., Taverne Y.J.H.J., van Schie M.S., Bogers A.J.J.C., de Groot N.M.S. Optimization of intra-operative electrophysiological localization of the ligament of Marshall. Front. Cardiovasc. Med. 2022; 9: 1030064. DOI: 10.3389/fcvm.2022.1030064
  18. Kim D.T., Lai A.C., Hwang C., Fan L.-T., Karagueuzian H.S., Chen P.-S. et al. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J. Am. Coll. Cardiol. 2000; 36: 1324–1327. DOI: 10.1016/S0735-1097(00)00819-6
  19. Iaizzo P.A. (Ed.) Handbook of cardiac anatomy, physiology, and devices. Totowa, N.J.: Humana Press; 2005.
  20. Macedo P., Patel S.M., Bisco S.E., Asirvatham S.J. Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation. Indian Pacing Electrophysiol. J. 2010; 10 (7): 292–309.
  21. Lin J., Scherlag B.J., Lu Z., Zhang Y., Liu S., Patterson E. et al. Inducibility of atrial and ventricular arrhythmias along the ligament of Marshall: role of autonomic factors. J. Cardiovasc. Electrophysiol. 2008; 19: 955–962. DOI: 10.1111/j.1540-8167.2008.01159.x
  22. Aksu T., Gupta D., Pauza D.H. Anatomy and physiology of intrinsic cardiac autonomic nervous system: Da Vinci Anatomy Card #2. JACC Case Rep. 2021; 3 (4): 625–629. DOI: 10.1016/j.jaccas.2021.02.018
  23. Bourier F., Duchateau J., Vlachos K., Lam A., Martin C.A., Takigawa M. et al. High-power short-duration versus standard radiofrequency ablation: insights on lesion metrics. J. Cardiovasc. Electrophysiol. 2018; 29 (11): 1570–1575. DOI: 10.1111/jce.13724
  24. Sokolskaya M.A., Shvarts V.A., Bockeria L.A. Clinical case of diagnosing sinus node dysfunction using a personal remote ECG monitoring system in a patient after surgical treatment of hypertrophic cardiomyopathy. Noninvasive Arrhythmology. 2022; 19 (2): 112–119 (in Russ.) DOI: 10.15275/annaritmol.2022.2.7
  25. Revishvili A.Sh., Popov V.A., Aminov V.V., Anishchenko M.M., Malyshenko E.S., Kadyrova M.V. et al. Prediction of the effectiveness of radiofrequency isolation of the pulmonary vein in the treatment of concomienting paroxysmal form of atrial fibrillation during coronary artery bypass grafting. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (6): 702–712 (in Russ.). DOI: 10.24022/0236-2791-2023-65-6-702-712

About Authors

  • Mikhail L. Dvali, Cardiovascular Surgeon; ORCID
  • Sergey Yu. Serguladze, Dr. Med. Sci., Professor, Head of Department, Cardiovascular Surgeon; ORCID
  • Oleg V. Sopov, Cand. Med. Sci., Researcher, Cardiovascular Surgeon; ORCID
  • Boris I. Kvasha, Cand. Med. Sci., Cardiovascular Surgeon, ORCID
  • Georgiy A. Khugaev, Researcher, Pathologist; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery