Muscle status abnormalities and adipomyokines in patients undergoing elective percutaneous coronary interventions

Authors: Karetnikova V.N.1 2, Neeshpapa A.G.1, Krivoshapova K.E.1, Svarovskaya P.K.2, Barbarash O.L.1

Company: 1 Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
2 Kemerovo State Medical University, Kemerovo, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18S-S72-S81

For citation: Karetnikova V.N., Neeshpapa A.G., Krivoshapova K.E., Svarovskaya P.K., Barbarash O.L. Muscle status abnormalities and adipomyokines in patients undergoing elective percutaneous coronary interventions. Creative Cardiology. 2024; 18 (Special Issue): S72–S81 (in Russ.). DOI: 10.24022/1997-3187-2024-18S-S72-S81

Received / Accepted:  15.11.2024 / 12.12.2024

Keywords: coronary heart disease sarcopenia presarcopenia dynapenia adipomyokines cytokines

Download
Full text:  

 

Abstract

Objective: to evaluate the associations of adipomyokines with muscle status disorders (dynapenia, presarcopenia, sarcopenia) in patients undergoing elective percutaneous coronary interventions.

Material and methods. The study included 83 people hospitalized in the clinic for elective percutaneous coronary intervention. Muscle status (MS) disorders in the study are represented by sarcopenia and its components in the form of dynapenia and presarcopenia. Verification of the diagnosis of sarcopenia was performed according to the consensus of the European working group from 2019. Determination of cytokines in the peripheral blood serum was performed by a quantitative method of solid-phase enzyme immunoassay.

Patients were divided into groups according to the specific type of MS disorder (sarcopenia, presarcopenia, dynapenia), patients with coronary heart disease (CHD) without MS disorders served as a comparison group.

Results. Differences in adiponectin concentrations were found between the groups with sarcopenia (0.99 (0.71; 1.19)) ng/ ml and patients with coronary heart disease without metabolic syndrome disorders (1.5 (1.3; 1.9) ng/ml, p = 0.003). Among patients with presarcopenia, compared with the group with preserved metabolic syndrome, higher concentrations of tumor necrosis factor-β (5.5 (1.3; 12.2) and 1.6 (0.1; 4) pg/ml, respectively, p = 0.014); interleukin-10 (1.35 (0.6; 2.1) and 0.4 (0.1; 1.2) pg/ml, respectively, p = 0.0025) were determined. The group with dynapenia also differed from patients without MS disorders by a lower level of adiponectin: 1.2 (0.8; 1.64) ng/ml, with an adiponectin level of 1.5 (1.32; 1.9) ng/ml among individuals with preserved MS (p = 0.002).

Conclusion. MS disorders in patients with coronary heart disease occurred in 66.3% (55 people), of which sarcopenia was detected in 23.6% (13 people) of cases, presarcopenia in 38.2% (21 patients), and dynapenia in 38.2% (21 patients). Associations of adipomyokines determined in the peripheral blood of patients with coronary heart disease and various types of MS disorders were established. The obtained results indicate the possibilities of using the clinical and prognostic potential of adipomyokines in patients with coronary heart disease.

References

  1. Kazakova M.I., Vysotskaya Е.А., Mitkovskaya N.P. The role of inflammation in the pathogenesis of atherosclerosis. Emergency Cardiology and Cardiovascular Risks. 2022; 6 (2): 1707–1713 (in Russ.). DOI: 10.51922/2616-633X.2022.6.2.1707
  2. Kibel A., Lukinac A.M., Dambic V., Juric I., Selthofer-Relatic K. Oxidative stress in ischemic heart disease. Oxid. Med. Cell. Longev. 2020; 2020: 6627144. DOI: 10.1155/2020/6627144
  3. Amin M.N., Siddiqui S.A., Ibrahim M., Hakim M.L., Ahammed M.S., Kabir A., Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med. 2020; 8: 2050312120965752. DOI: 10.1177/2050312120965752
  4. Damluji A.A., Alfaraidhy M., AlHajri N., Rohant N.N., Kumar M., Al Malouf C. et al. Sarcopenia and cardiovascular diseases. Circulation. 2023; 147 (20): 1534–1553. DOI: 10.1161/CIRCULATIONAHA.123.064071
  5. Xu J., Yu L., Liu F., Wan L., Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol. 2023; 14: 1222129. DOI: 10.3389/fimmu.2023.1222129
  6. Pan L., Xie W., Fu X., Lu W., Jin H., Lai J. et al. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021; 154: 111544. DOI: 10.1016/j.exger.2021.111544
  7. Vasyukova O.V., Kasyanova Yu.V., Okorokov P.L., Bezlepkina O.B. Myokines and adipomyokines: inflammatory mediators or unique molecules of targeted therapy for obesity? Problems of Endocrinology. 2021; 67(4): 3645 (in Russ.). DOI: 10.14341/probl12779
  8. Questionstar. https://questionstar.ru/statiy/calculator-razmera-viborki (дата обращения 23.08.2024 / accessed 23 august, 2024).
  9. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T. et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019; 48 (1): 16–31. DOI: 10.1093/ageing/afy169
  10. Masenko V.L., Kokov A.N., Grigoreva I.I., Krivoshapova K.E. Radiology methods of the sarcopenia diagnosis. Research and Practical Medicine Journal. 2019; 6 (4): 127–137 (in Russ.). DOI: 10.17709/2409-2231-2019-6-4-13
  11. De Oliveira dos Santos A.R., de Oliveira Zanuso B., Miola V.F.B., Barbalho S.M., Santos Bueno P.C., Flato U.A.P. et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int. J. Mol. Sci. 2021; 22 (5):2639. DOI: 10.3390/ijms22052639
  12. Barbalho S.M., Flato U.A.P., Tofano R.J., Goulart Rd.A., Guiguer E.L., Detregiachi C.R.P. et al. Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. Int. J. Mol. Sci. 2020; 21(10): 3607. DOI: 10.3390/ijms21103607
  13. Diah M., Lelo A., Lindarto D., Mukhtar Z. Plasma concentrations of adiponectin in patients with coronary artery disease and coronary slow flow. Acta Med. Indones. 2019; 51 (4): 290–295.
  14. Krause M.P., Milne K.J., Hawke T.J. Adiponectin – consideration for its role in skeletal muscle health. Int. J. Mol. Sci. 2019; 20: 1528. DOI: 10.3390/ijms20071528
  15. Kishida K., Funahashi T., Shimomura I. Adiponectin as a routine clinical biomarker. Best. Pract. Res. Clin. Endocrinol. Metab. 2014; 28 (1): 119–130. DOI: 10.1016/j.beem.2013.08.006
  16. Komici K., Dello Iacono A., De Luca A., Perrotta F., Bencivenga L., Rengo G. et al. Adiponectin and sarcopenia: a systematic review with meta-analysis. Front. Endocrinol. (Lausanne). 2021; 12: 576619. DOI: 10.3389/fendo.2021.576619
  17. Zhang M., Chen X., Zhu Y., Yin L., Quan Z., Ou Y., He B. Causal associations of circulating adiponectin with cardiometabolic diseases and osteoporotic fracture. Sci. Rep. 2022; 12 (1): 6689. DOI: 10.1038/s41598-022-10586-1
  18. Nakamura Y., Nakano M., Suzuki T., Sato J., Kato H., Takahashi J., Shiraki M. Two adipocytokines, leptin and adiponectin, independently predict osteoporotic fracture risk at different bone sites in postmenopausal women. Bone. 2020; 137: 115404. DOI: 10.1016/j.bone.2020.115404
  19. Zhao S., Kusminski C.M., Scherer P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021; 128 (1): 136–149. DOI: 10.1161/CIRCRESAHA.120.314458
  20. Hu K., Deya Edelen E., Zhuo W., Khan A., Orbegoso J., Greenfield L. et al. Understanding the consequences of fatty bone and fatty muscle: how the osteosarcopenic adiposity phenotype uncovers the deterioration of body composition. Metabolites. 2023; 13 (10): 1056. DOI: 10.3390/metabo13101056
  21. Borges M.C., Barros A.J.D., Ferreira D.L.S., Casas J.P., Horta B.L., Kivimaki M. et al. Metabolic profiling of adiponectin levels in adults: mendelian randomization analysis. Circ. Cardiovasc. Genet. 2017; 10 (6): e001837. DOI: 10.1161/CIRCGENETICS.117.001837
  22. Borelli A., Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell. Death Differ. 2021; 28 (8): 2305–2314. DOI: 10.1038/s41418-021-00834-8
  23. Asselbergs F.W., Pai J.K., Rexrode K.M., Hunter D.J., Rimm E.B. Effects of lymphotoxin-alpha gene and galectin-2 gene polymorphisms on inflammatory biomarkers, cellular adhesion molecules and risk of coronary heart disease. Clin. Sci. (Lond.). 2007; 112 (5): 291–298. DOI: 10.1042/CS20060200
  24. Garashchenko N.E., Seminskiy I.Zh. Lymphotoxin alpha: biological and clinical significance. Transbaikalian Medical Bulletin. 2022; 1: 44– 55 (in Russ.). DOI: 10.52485/19986173_2022_1_44
  25. Nascimento C.M.C., Zazzetta M.S., Gomes G.A.O., Orlandi F.S., Gramani-Say K., Vasilceac F.A. et al. Higher levels of tumor necrosis factor β are associated with frailty in socially vulnerable community-dwelling older adults. BMC Geriatr. 2018; 18 (1): 268. DOI: 10.1186/ s12877-018-0961-6
  26. Sato R., Vatic M., Peixoto da Fonseca G.W., Anker S.D., von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc. Res. 2024; 120 (9): 982–998. DOI: 10.1093/cvr/cvae073
  27. Xu S., Zhang J., Liu J., Ye J., Xu Y., Wang Z. et al. The role of interleukin-10 family members in cardiovascular diseases. Int. Immunopharmacol. 2021; 94: 107475. DOI: 10.1016/j.intimp.2021.107475
  28. Kuzneczov A.S., Savicheva M.A., Xon K.D., Knysh S.V., Markelova E.V. Study of the level citokines: IFN-Γ, IL-29, IL-28VB, TNF-2, IL-10 in blood serum of HIV-posotive patiens with cytomegalovirus infection. Modern Problems of Seines and Education. 2022; 6 (2) (in Russ.). DOI: 10.17513/spno.32290
  29. Antuña E., Cachán-Vega C., Bermejo-Millo J.C., Potes Y., Caballero B., Vega-Naredo I. et al. Inflammaging: Implications in sarcopenia. Int. J. Mol. Sci. 2022; 23 (23): 15039. DOI: 10.3390/ijms232315039
  30. Wang C., Wang J., Wan R., Kurihara H., Wang M. The causal association between circulating cytokines with the risk of frailty and sarcopenia under the perspective of geroscience. Front. Endocrinol. (Lausanne). 2024; 15: 1293146. DOI: 10.3389/fendo.2024.1293146

About Authors

  • Viktoriya N. Karetnikova, Dr. Med. Sci., Professor of the Department of Cardiology and Cardiovascular Surgery, Head of the Laboratory of Circulatory Pathology of the Department of Clinical Cardiology; ORCID
  • Anastasiya G. Neeshpapa, Cand. Med. Sci., Researcher at the Laboratory of Circulatory Pathology of the Department of Clinical Cardiology; ORCID
  • Kristina E. Krivoshapova, Cand. Med. Sci., Researcher at the Laboratory for Comorbidities in Cardiovascular Diseases, Department of Clinical Cardiology; ORCID
  • Polina K. Svarovskaya, Postgraduate; ORCID
  • Olga L. Barbarash, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Chief of the Department of Cardiology and Cardiovascular Surgery; ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by