A successful use of cardiac neuroablation in the treatment of tachycardia-bradycardia syndrome and binodal weakness

Authors: Dvali M.L., Serguladze S.Yu., Sopov O.V., Matsonashvili G.M., Shishkina N.M., Pronicheva I.V.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2024-18S-S129-S138

For citation: Dvali M.L., Serguladze S.Yu., Sopov O.V., Matsonashvili G.M., Shishkina N.M., Pronicheva I.V. A successful use of cardiac neuroablation in the treatment of tachycardia-bradycardia syndrome and binodal weakness. Creative Cardiology. 2024; 18 (Special Issue): S129–S138 (in Russ.). DOI: 10.24022/1997-3187-2024-18S-S129-S138

Received / Accepted:  07.10.2024 / 21.10.2024

Keywords: binodal weakness syndrome cardiac deparasympathization cardioneuroablation tachy-brady syndrome ganglionic plexuses

Download
Full text:  

 

Abstract

Binodal weakness syndrome (BWS) consists of sick sinus syndrome (SSS) and atrioventricular blocks (AVB) and has numerous clinical manifestations, one of which is the tachycardia-bradycardia syndrome characterized by alternating periods of accelerated and slowed heartbeats. The clinical manifestation of these rhythm disturbances is associated with insufficient tissue perfusion in the body, resulting in regulatory systems (humoral system and innervation) stimulating the formation of new pacemakers. The first line of treatment for patients with frequently recurring syncopal states with confirmed SSS or BWS is the implantation of a permanent pacemaker. BWS can have organic and functional causes. The former are considered irreversible, whereas the latter are amenable to modulation. For patients with a functional etiology of BWS, a new and promising intervention is the modulation of the heart’s autonomic activity through ablation of parasympathetic ganglionated plexuses. The implantation of a pacemaker is associated with a reduced quality of life and limitations in the activity of the working population, which is psychologically difficult for patients and entails long-term economic costs for the state. The use of cardioneuroablation allows not only to avoid the implantation of a pacemaker but also to eliminate the cause of supraventricular arrhythmias. Despite the high effectiveness of the method in individual clinical observations, the principles of its application and the choice of ablation targets are based on the understanding of electrophysiology, which complicates its adoption by specialists. The presented clinical case confirms the effectiveness of applying ablation of ganglionated plexuses identified using high-frequency stimulation after an ineffective attempt of cardioneuroablation based exclusively on the anatomical approach. The application of the method for modifying parasympathetic tone led to the elimination of both pauses and recurrent tachyarrhythmias in a patient with bradyarrhythmia.

References

  1. Sokolskaya M.A., Shvarts V.A., Bokeria L.A. A clinical case of diagnosing sinus node dysfunction using a personal remote electrocardiogram monitoring system in a patient after surgical treatment of hypertrophic cardiomyopathy. Annaly aritmologii. 2022; 19 (2): 110–115 (in Russ.).
  2. Khugaev S.G. Etiology and manifestations of sinus node weakness syndrome. Results of the use of various treatment methods. Annaly aritmologii. 2006; 3 (5): 61–65 (in Russ.)
  3. Elawa S., Persson R.M., Han S.Y., Bolter C.P. Sympathetic and vagal interaction in the control of cardiac pacemaker rhythm in the guinea-pig heart: importance of expressing heart rhythm using an appropriate metric. Auton. Neurosci. 2022; 243: 103025. DOI: 10.1016/j.autneu.2022.103025
  4. Serguladze S.Yu., Matsonashvili G.R., Kulumbegov G.R. Cardiac autonomic denervation. Anovel approach to the treatment of bradyarrhythmias. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 (6): 606–615 (in Russ.). DOI: 10.24022/1810-0694-2022-23-6-606-615
  5. Yang M., Lin Y., Cheng H., Zheng D., Tan S., Zhu L. et al. Excessive supraventricular ectopic activity and the risk of atrial fibrillation and stroke: a systematic review and meta-analysis. J. Cardiovasc. Dev. Dis. 2022; 9 (12): 461. DOI: 10.3390/jcdd9120461
  6. Kadyraliev S.O., Baranovich V.Yu., Faybushevich A.G., Maksimkin D.A. Long-term results of surgical treatment of patients with bradyarrhythmias with risk factors for the development of pacemaker dysfunction. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2023; 24 (5): 456–467 (in Russ.). DOI: 10.24022/1810-0694-2023-24-5-456-467
  7. D’Ascenzi F., Solari M., Anselmi F., Valentini F., Barbati R., Palmitesta P. et al. Electrocardiographic changes induced by endurance training and pubertal development in male children. Am. J. Cardiol. 2017; 119 (5): 795–801. DOI: 10.1016/j.amjcard.2016.11.017
  8. Paech C., Ebel V., Wagner F., Stadelmann S., Klein A.M., Döhnert M. et al. Quality of life and psychological co-morbidities in children and adolescents with cardiac pacemakers and implanted defibrillators: a cohort study in Eastern Germany. Cardiol. Young. 2020; 30 (4): 549–559. DOI: 10.1017/S104795112000061X
  9. Aksu T., Brignole M., Calo L., Debruyne P., Di Biase L. Deharo J.C. et al. Cardioneuroablation for the treatment of reflex syncope and functional bradyarrhythmias: a scientific statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS) and the Latin American Heart Rhythm Society (LAHRS). EP Europace. 2024; 26 (8). DOI: 10.1093/europace/euae206
  10. Jackson L.R. 2nd, Rathakrishnan B., Campbell K., Thomas K.L., Piccini J.P., Bahnson T. et al. Sinus node dysfunction and atrial fibrillation: a reversible phenomenon? Pacing Clin. Electrophysiol. 2017; 40 (4): 442–450. DOI: 10.1111/pace.13030
  11. Aksu T., Guler T.E., Bozyel S., Yalin K. Selective vagal innervation principles of ganglionated plexi: step-by-step cardioneuroablation in a patient with vasovagal syncope. J. Interv. Card. Electrophysiol. 2021; 60 (3): 453–458. DOI: 10.1007/s10840-020-00757-3
  12. Austelle C.W., Cox S.S., Wills K.E., Badran B.W. Vagus nerve stimulation (VNS): recent advances and future directions. Clin. Auton. Res. 2024; 01065. DOI: 10.1007/s10286-024-01065-w
  13. Huffman W.J., Musselman E.D., Pelot N.A., Grill W.M. Measuring and modeling the effects of vagus nerve stimulation on heart rate and laryngeal muscles. Bioelectron. Med. 2023; 9: 3. DOI: 10.1186/s42234-023-00107-4
  14. Chiou C.W., Eble J.N., Zipes D.P. Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes: the third fat pad. Circulation. 1997; 95 (11): 2573–2584. DOI: 10.1161/01.CIR.95.11.2573
  15. Ariyaratnam J.P., Middeldorp M., Thomas G., Noubiap J.J., Lau D., Sanders P. Risk factor management before and after atrial fibrillation ablation. Card. Electrophysiol. Clin. 2020; 12 (2): 141–154. DOI: 10.1016/j.ccep.2020.02.009
  16. Armour J.A., Murphy D.A., Yuan B.X., Macdonald S., Hopkins D.A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997; 247 (2): 289–298. DOI: 10.1002/(SICI)1097-0185(199702)247:2<289:AID-AR15>3.0.CO;2-L
  17. Pachon J.C., Pachon E.I., Pachon J.C., Lobo T.J., Pachon M.Z., Vargas R.N., Jatene A.D. “Cardioneuroablation” – new treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace. 2005 ; 7 (1): 1–13. DOI: 10.1016/j. eupc.2004.10.003
  18. Ali R.L., Hakim J.B., Boyle P.M., Zahid S., Sivasambu B., Marine J.E. et al. Arrhythmogenic propensity of the fibrotic substrate after atrial fibrillation ablation: a longitudinal study using magnetic resonance imaging-based atrial models. Cardiovasc. Res. 2019; 115 (12): 1757–1765. DOI: 10.1093/cvr/cvz083
  19. Bansmann P.M., Mohsen Y., Horlitz M., Stöckigt F. Optimizing fibrosis detection: a comparison of electroanatomical mapping and late enhancement gadolinium magnetic resonance imaging. J. Interv. Card. Electrophysiol. 2024; 67: 571–577. DOI: 10.1007/s10840-023-01627-4
  20. Makarova N.V., Durmanov S.S., Bazylev V.V. Complications of catheter treatment of atrial fibrillation associated with vascular femoral access. Annaly aritmologii. 2024; 21 (1): 26–38 (in Russ.).
  21. Lin J., Scherlag B.J., Lu Z., Zhang Y., Liu S., Patterson E. et al. Inducibility of atrial and ventricular arrhythmias along the ligament of Marshall: role of autonomic factors. J. Cardiovasc. Electrophysiol. 2008; 19: 955–962. DOI: 10.1111/j.1540-8167.2008.01159.x
  22. Golukhova E.Z. Report on the scientific and therapeutic activities of the A.N. Bakulev National Medical Research Center for Cardiovascular Surgery of the Ministry of Health of Russia for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; Special issue (25): 5–141. DOI: 10.24022/1810-0694-2024-25S

About Authors

  • Michael L. Dvali, Cardiovascular Surgeon, ORCID
  • Sergey Yu. Serguladze, Dr. Med. Sci., Professor, Senior Researcher, Head of Department, Cardiovascular Surgeon; ORCID
  • Oleg V. Sopov, Cand. Med. Sci., Сardiovascular Surgeon; ORCID
  • Georgiy R. Matsonashvili, Cand. Med. Sci., Researcher, Cardiovascular Surgeon, ORCID
  • Nadezhda M. Shishkina, Cardiologist; ORCID
  • Irina V. Pronicheva, Cand. Med. Sci., Senior Researcher, ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by