Difficulties and limitations in integrating artificial intelligence in healthcare
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Clinical Cases
DOI:
For citation: Buziashvili Yu.I., Matskeplishvili S.T., Asymbekova E.U., Akildzhonov F.R. Difficulties and limitations in integrating artificial intelligence in healthcare. Creative Cardiology. 2025; 19 (1): 105–114 (in Russ.). DOI: 10.24022/1997-3187-2025-19-1-105- 114
Received / Accepted: 21.02.2025 / 03.03.2025
Keywords: artificial intelligence healthcare algorithms
Abstract
Рroviding high-quality healthcare is not an easy task and requires the creation of more convenient mechanisms for its functioning. Based on this, the healthcare system around the world is making great efforts to find new information technologies and processes that can reduce costs and find solutions to a growing range of problems. The introduction of artificial intelligence into the healthcare system faces barriers both inside and outside the medical sector. Data privacy, social and ethical issues and the difficulties faced by developers are among the limitations on the successful integration in medicine. The main goal of modern scientists is to develop a full-fledged universal algorithm with a high degree of privacy and security. Collaboration between researchers, healthcare professionals, policymakers and experts in the field of advanced technologies is important to overcome these barriers. This is due to the development of comprehensive guidelines, regulatory frameworks and technical solutions, with a special focus on privacy and transparency, can change the concept of providing medical care and improve the quality of diagnosis and treatment of patients, while observing generally accepted ethical standards.References
- Gerasimov A.N., Tatuev A.A., Lelikova E.I. Study of problems of healthcare development in rural areas of the region. Natural Sciences and Humanities. 2022; 44 (6): 59–65 (in Russ.).
- Buziashvili Yu.I., Asymbekova E.U., Tugeeva E.F., Akildzhonov F.R. The role of artificial intelligence in cardio-oncology: present and future. Consilium Medicum. 2023; 25 (1): 29–33 (in Russ.). DOI: 10.26442/20751753.2023.1.202095
- Khosravi M., Zare Z., Mojtabaeian S.M., Izadi R. Artificial intelligence and decision-making in healthcare: a thematic analysis of a systematic review of reviews. Health Serv. Res. Manag. Epidemiol. 2024; 11:23333928241234863. DOI: 10.1177/23333928241234863
- Nakhate V., Gonzalez Castro L.N. Artificial intelligence in neuro-oncology. Front. Neurosci. 2023; 17: 1217629. DOI: 10.3389/ fnins.2023.1217629
- Takkavatakarn K., Dai Y., Hsun Wen H., Kauffman J., Charney A., Coca S.G. et al. Comparison of predicting cardiovascular disease hospitalization using individual, ZIP code-derived, and machine learning model-predicted educational attainment in New York City. PLoS ONE. 2024; 19 (2): e0297919. DOI: 10.1371/journal.pone.0297919
- Kao Y.T., Huang C.Y., Fang Y.A., Liu J.C., Chang T.H. Machine learning-based prediction of atrial fibrillation risk using electronic medical records in older aged patients. Am. J. Cardiol. 2023; 198: 56–63. DOI: 10.1016/j.amjcard.2023.03.035
- Kuznetsov A.I., Shchepkina E.V., Sushinskaya T.V., Epifanova S.V., Faur D.M. Possibilities and limitations of artificial intelligence application in medicine. News of Clinical Cytology of Russia. 2023; 27 (2): 18–24 (in Russ.). DOI: 10.24412/1562-4943-2023-2-0003
- Vasyuta E.A., Podolskaya T.V. Problems and prospects of introducing artificial intelligence in medicine. State and municipal administration. Scientific notes. 2022; 1: 25–32 (in Russ.). DOI:10.22394/2079-1690-2022-1-1-25-32
- Priyanshu A., Vijay S., Kumar A., Naidu R., Mireshghallah F. Are chatbots ready for privacy-sensitive applications? An investigation into input regurgitation and prompt-induced sanitization. 2023. DOI: 10.48550/arXiv.2305.15008 (дата обращения 19.02.2025/accessed February 20, 2025).
- Google DeepMind CEO Demis Hassabis gets UK knighthood for ‘services to artificial intelligence’ https://techcrunch.com/2024/03/29/google-deepmind-ceo-demis-hassabis-gets-uk-knighthood-for-services-to-artificial-intelligence/ (дата обращения 19.02.2025/accessed February 20, 2025).
- Schneble C.O., Elger B.S., Shaw D.M. Google’s Project Nightingale highlights the necessity of data science ethics review. EMBO Mol. Med. 2020; 12 (3): e12053. DOI: 10.15252/emmm.202012053
- «Гемотест» оштрафовали на 60000 рублей после утечки данных клиентов https://www.forbes.ru/tekhnologii/472533-gemotest-ostrafovali-na-60-000-rublej-posle-utecki-dannyh-klientov (дата обращения 19.02.2025/accessed February 20, 2025).
- Mondschein C.F., Monda C. The EU’s General Data Protection Regulation (GDPR) in a Research Context. In: Kubben P., Dumontier M., Dekker A., eds. Fundamentals of Clinical Data Science. Cham (CH): Springer; 2018. DOI: 10.1007/978-3-319-99713-1_5
- Система официальной документации Организации Объединенных Организаций https://documents.un.org/doc/undoc/ltd/n24/065/94/pdf/n2406594.pdf?token=3XhHgzymoXZ21kZYCI&fe=true (дата обращения 19.02.2025/accessed February 19, 2025).
- https://gbuzmood.ru/about/news/novosti-kliniki/v-onkodispanserenachali-provodit-konsiliumy-na-novoy-tsifrovoy-platforme/ (дата обращения 19.02.2025/accessed February 19, 2025).
- Frantz R., Suprateek S. Opinion paper: “So what if Chat wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inform. Manag. 2023; 71: 102642. DOI: 10.1016/j. ijinfomgt.2023.102642
- На Президиуме РАН обсудили будущее исследований в области искусственного интеллектa. https://www.ras.ru/news/shownews.aspx?i d=8b23b3f6-f039-44a8-ae24-2043e1265f36 (дата обращения 19.02.2025/accessed February 19, 2025).
- Zaikman Y., Houlihan A.E. It’s just a breast: an examination of the effects of sexualization, sexism, and breastfeeding familiarity on evaluations of public breastfeeding. BMC Pregnancy Childbirth. 2022; 22 (1): 122. DOI:10.1186/s12884-022-04436-1
- Bradley S.H. The ethics and politics of addressing health inequalities. Clin. Med. (Lond). 2021; 21 (2): 147–149. DOI: 10.7861/ clinmed.2020-0945
- Beijing to limit use of generative AI in online healthcare activities, including medical diagnosis, amid growing interest in Chat-like services https://sc.mp/14y5?utm_source=copylink&utm_campaign=3231828&utm_medium=share_widget (дата обращения 19.02.2025/ accessed February 19, 2025).
- Искусственный интеллект в здравоохранении: поиск этического пути к цифровой трансформации. https://mednet.ru/novosti/iskusstvennyij-intellekt-v-zdravooxranenii-poisk-eticheskogo-puti-k-czifrovoj-transformaczii (дата обращения 19.02.2025/accessed February 19, 2025).
- FDA. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. (2018). (дата обращения 19.02.2025/accessed February 19, 2025).
- Diaconu C., Florina G. Expending the power of artificial intelligence in preclinical research: an overview. IOP Conference Series: Materials Science and Engineering. 2022; 1254 (1): 012036. DOI: 10.1088/1757-899X/1254/1/012036
- Alowais S.A., Alghamdi S.S., Alsuhebany N., Alqahtani T., Alshaya A.I., Almohareb S.N. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 2023; 23 (1): 689. DOI: 10.1186/s12909-023-04698-z
- Buslenko N.S., Glyantsev S.P. Emergence and development of the cardiology service at the A.N. Bakulev Cardiovascular Surgery Center (on the 65th anniversary of its foundation). Part 1. Cardiology service: beginning, first employees. Diagnostics and treatment of patients with heart defects. Creative Cardiology. 2021; 15 (1): 9–31 (in Russ.). DOI: 10.24022/1997-3187-2021-15-1-9-31
- Golukhova E.Z., Keren M.A., Zavalikhina T.V., Bulaeva N.I., Marapov D.I., Sigaev I.Yu. et al. Prognosis of early outcomes after isolated coronary bypass surgery: results of a singlecenter cohort study. Annals of the Russian Academy of Medical Sciences. 2023; 78 (3): 176–184 (in Russ.). DOI: 10.15690/vramn8086
- Golukhova E.Z., Keren M.A., Zavalikhina T.V., Bulaeva N.I., Grechishnikova D.A., Sigaev I.Yu., Yakhyaeva K.B. The effectiveness of machine learning models in predicting early postoperative death after coronary bypass surgery. Creative Cardiology. 2023; 17 (1): 77–93 (in Russ.). DOI: 10.24022/1997-3187-2023-17-1-77-93
- Golukhova E.Z., Keren M.A., Zavalikhina T.V., Bulaeva N.I., Akatov D.S., Sigaev I.Yu. et al. Potential of machine learning methods in operational risk stratification in patients with coronary artery disease scheduled for coronary bypass surgery. Russian Journal of Cardiology. 2023; 28 (2): 5211 (in Russ.). DOI:10.15829/1560-4071-2023-5211
- Patsoeva I.M., Averina I.I., Mironenko M.Yu., Glushko L.A., Kanametov T.N., Panagov Z.G. et al. Prediction of the development of heart failure in the early postoperative period according to the contractile reserve in patients with aortic stenosis: results of a prospective, non- randomized clinical study. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (5): 532–541 (in Russ.). DOI: 10.24022/0236-2791-2023-65-5-532-541
- Belov D.V., Narkevich A.N., Abramovskikh O.S., Fokin A.A. Prediction of abdominal complications in cardiac surgery using neural networks. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (6): 744–749 (in Russ.). DOI: 10.24022/0236-2791-2023-65-6-744-749
About Authors
- Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Head of the Clinico-Diagnostic Department; ORCID
- Simon T. Mackeplishvili, Dr. Med. Sci., Professor, Corresponding Member of Russian Academy of Sciences, Chief Researcher; ORCID
- Elmira U. Asymbekova, Dr. Med. Sci., Leading Researcher; ORCID
- Firdavsdzhon R. Akildzhonov, Postgraduate; ORCID