The role of genetic factors in the pathogenesis of multifocal atherosclerosis, influence on prognosis and treatment results

Authors: Buziashvili Yu.I., Koksheneva I.V., Timerbulatova T.R., Ambatiello S.G., Buziashvili V.Yu., Grishenok A.V., Alpenidze V.A., Ibragimov M.S., Pirtskhalava S.D.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Original articles


DOI: https://doi.org/10.24022/1997-3187-2025-19-2-183-195

For citation: Buziashvili Yu.I., Koksheneva I.V., Timerbulatova T.R., Ambatiello S.G., Buziashvili V.Yu., Grishenok A.V., Alpenidze V.A., Ibragimov M.S., Pirtskhalava S.D. The role of genetic factors in the pathogenesis of multifocal atherosclerosis, influence on prognosis and treatment results. Creative Cardiology. 2025; 19 (2): 183–195 (in Russ.). DOI: 10.24022/1997-3187-2025-19-2-183-195

Received / Accepted:  13.01.2025 / 28.01.2025

Keywords: multifocal atherosclerosis genetic markers of atherosclerosis risk genetic prognostic risk model, risk stratification of adverse cardiovascular events in patients with atherosclerosis.



Subscribe 🔒

 

Abstract

The aim of the study is to study the role of genetic markers involved in the regulation of pathways associated with inflammation, endothelial function, lipid metabolism, hemostasis in the pathogenesis of multifocal atherosclerosis, their impact on the prognosis and treatment outcomes.

Material and methods. The study is a retrospective analysis of data (genetic, clinical, instrumental and laboratory parameters) of 96 patients with stable coronary artery disease, including 10 patients with multifocal atherosclerosis, who underwent myocardial revascularization procedures, as well as interventions on other vascular regions, who were monitored for 6.4±0.54 years. Genetic testing for carriage of 68 SNPs of 37 candidate genes involved in the regulation of various pathophysiological pathways was performed: CRP (rs3093059, rs3093062, rs1417938, rs1800947, rs1130864), TNF-SF (rs385064), LTα (rs1800797), Kalirin (rs7620580), p22 (phox) (rs4673), Stromelysin-1 (rs3025058), P-selectin (rs6136, rs3093030), LTA4H (rs2660899), TLR4 (rs1554973), CCRL2 (rs6808835, rs6971599), CCR2 (rs2227010), CCR5 (rs746492, rs1799988, rs2097285); LPA (rs1853021), APOC3 (rs2854116; rs4520; rs5128), LPL (rs268; rs285; rs328; rs1801177; rs2083637; rs10096633, rs1800590), PON1 (rs854560; rs662), ABCA1 (rs 2740483; rs1800977, rs2230806), PCSK9 (rs505151), APOA5 (rs964184), LRP1 (rs5174), ANGPTL3 (rs10889353), TRIB1 (rs29540029), XKR6-AMAC1L2 (rs78194412), APOE (rs405509; rs429358+rs7412), OLR1 (rs1050283); ACE (rs4341), AGT (rs5050, rs699, rs4762), ADRB1 (rs1801253, rs1801252), EDN1 (rs10478694, rs5370), ENDRA (rs1801708), p22 (phox) (rs4673); MTHFR (rs1801133), SERPINE-1 (rs2227631), F2 (rs1799663), F5 (rs6025), F2R (rs6313), FGB (rs1800787, rs2227401, rs2042642, rs5918), vWF (rs2239159, rs2239162, rs 7969672, rs2270152).

Results. The relationship with the risk of multifocal atherosclerosis was shown by the carriage of the AG genotype of SNP LRP1 rs5174 (the gene of protein-1, similar to the low-density lipoprotein receptor). The carriage of this genotype increases the risk of developing multifocal atherosclerosis by 5.3 times (OR=5.3; 95%CI: 1,06-26,4; χ2=5,25 p=0,05). Univariate analysis revealed associations with the risk of developing MACE with carriage of the following genetic markers: carriage of the CT genotype LPL rs10096633 (OR=5.7; 95% CI: 1.7-18.8; χ2=15.7; p=0.0001); the AA genotype ENDRA rs1801708 (OR=5.9; 95%CI: 1.7-131.9; χ2=9.66; p=0.008); the GG genotype MTHFR rs1801133 (OR=2.65; 95%CI: 1.1- 7.6; χ2=6.34; p=0.04); genotype GG CCR5 rs1799988 (OR=2.8; 95%CI:1.1-7.55; χ2=5.12; p=0.07); CC genotype CCR5 rs746492 (OR=3.3; 95%CI:1.28-9.39; χ2=6.0; p=0.03).

Conclusion. The results of the study may potentially serve as a basis for developing new therapeutic approaches to the prevention and treatment of atherosclerosis, and the established genetic risk associations may be used to assess the prognosis in patients with atherosclerotic cardiovascular diseases.

References

  1. Bokeria L.A., Bokeria O.L., Zhuginisov D.Sh., Koasari A.K., Yurkulieva G.A., Razhivina A.V. Staged or one-stage surgical treatment of lesions of the brachiocephalic and coronary vessels. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (4): 452–458 (in Russ.). DOI: 10.24022/1810-0694-2021-22-4-452-458
  2. Keren M.A., Sheykina N.A., Sigaev I.Yu., Merzlyakov V.Yu., Alshibaya M.D., Arakelyan V.S. et al. Outcomes of coronary and carotid revascularization depending on the implemented surgical tactics: the experience of one center. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (6): 713–721 (in Russ.). DOI: 10.24022/0236-2791-2023-65-6-713-721
  3. Shlyakhto E.V. Multifocal atherosclerosis in the real practice of a cardiologist: what we know and where we should concentrate our efforts. Russian Journal of Cardiology. 2024; 29 (4): 7–9 (in Russ.). DOI: 10.15829/1560-4071-2024-5845
  4. Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Batluk T.I., Koziolova N.A., Chesnikova A.I. et al. Patients with non-obstructive coronary artery disease and multifocal atherosclerosis. Subanalysis of the real clinical practice registry KAMMA (clinical registry for studying the population of patients with identified multifocal atherosclerosis in the territory of the Russian Federation and Eurasian countries). Cardiology. 2024; 64 (8): 13–23 (in Russ.). DOI: 10.18087/cardio.2024.8.n2683
  5. Ibragimov R.M., Ioshina V.I., Ambatiello S.G., Buziashvili Yu.I. Results of direct myocardial revascularization (coronary artery bypass grafting/percutaneous coronary intervention) in patients with multifocal atherosclerosis in acute coronary syndrome without ST segment elevation. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (1); 46–53 (in Russ.). DOI: 10.24022/1810-0694-2019-20-1-46-53
  6. Libby P. Inflammation and the pathogenesis of atherosclerosis. Vascul. Pharmacol. 2024; 154: 107255. DOI: 10.1016/j.vph.2023.107255
  7. Erol Ç. Atherosclerosis Reviewed. Anatol. J. Cardiol. 2024; 28 (8): 374. DOI: 10.14744
  8. Perrotta I. Atherosclerosis: From molecular biology to therapeutic perspective 2.0. Int. J. Mol. Sci. 2022; 23 (23): 15158. DOI: 10.3390/ijms232315158
  9. Mocci G., Sukhavasi K., Örd T., Bankier S., Singha P., Arasu U.T. et al. Single-cell gene-regulatory networks of advanced symptomatic atherosclerosis. Circ. Res. 2024; 134 (11): 1405–1423. DOI: 10.1161/CIRCRESAHA.123.323184
  10. Sheykina N.A., Keren M.A. The problem of choosing the optimal surgical tactics for treating patients with critical lesions of the coronary and carotid arteries. Grudnaya i serdechno-sosudistaya khirurgiya. 2022; 64 (3): 252–258 (in Russ.). DOI: 10.24022/0236-27912022-64-3-252-258
  11. Borovac J.A. The molecular mechanisms and therapeutic targets of atherosclerosis: from basic research to interventional cardiology. Int. J. Mol. Sci. 2024; 25 (9): 4936. DOI: 10.3390/ijms25094936
  12. McCarthy J.J., Parker A., Salem R., Moliterno D.J., Wang Q., Plow E.F. et al, GeneQuest Investigators. Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J. Med. Genet. 2004; 41 (5): 334–341. DOI: 10.1136/jmg.2003.016584
  13. Teslovich T.M., Musunuru K., Smith A.V., Edmondson A.C., Stylianou I.M., Koseki M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466 (7307): 707–713. DOI: 10.1038/nature09270
  14. Xian X., Ding Y., Dieckmann M., Zhou L., Plattner F., Liu M. et al. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. Elife. 2017; 16 (6): e29292. DOI: 10.7554/eLife.29292
  15. Chen J., Su Y., Pi S., Hu B., Mao L. The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Front. Cardiovasc. Med. 2021; 8 (28): 682389. DOI: 10.3389/fcvm.2021.682389
  16. Herz J., Hamann U., Rogne S., Myklebost O., Gausepohl H., Stanley K.K. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO. J. 1988; 7 (13): 4119–4127. DOI: 10.1002/j.1460-2075.1988.tb03306.x
  17. Moestrup S.K., Gliemann J. Purification of the rat hepatic alpha 2-macroglobulin receptor as an approximately 440-kDa single chain protein. J. Biol. Chem. 1989; 264 (26): 15574–15577.
  18. Ashcom J.D., Tiller S.E., Dickerson K., Cravens J.L., Argraves W.S., Strickla D.K. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin. J. Cell. Biol. 1990; 110: 1041–1048. DOI: 10.1083/jcb.110.4.1041
  19. Beisiegel U., Weber W., Ihrke G., Herz J., Stanley K.K. The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature. 1989; 341 (6238): 162–164. DOI: 10.1038/341162a0
  20. Franchini M., Montagnana M. Low-density lipoprotein receptor-related protein 1: new functions for an old molecule. Clin. Chem. Lab. Med. 2011; 49 (6): 967–970. DOI: 10.1515/CCLM.2011.154
  21. Garcia E., Camps-Renom P., Puig N., Fernández-Leon A., Aguilera-Simón A., Benitez-Amaro A. et al. Soluble low-density lipoprotein receptor-related protein 1 as a surrogate marker of carotid plaque inflammation assessed by 18F-FDG PET in patients with a recent ischemic stroke. J. Transl. Med. 2023; 21 (1): 131. DOI: 10.1186/s12967-022-03867-w
  22. Bown M.J., Jones G.T., Harrison S.C., Wright B.J., Bumpstead S., Baas A.F. et al. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am. J. Hum. Genet. 2011; 89 (5): 619–627. DOI: 10.1016/j.ajhg.2011.10.002
  23. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta. Physiol. (Oxf). 2015; 214 (1): 33–50. DOI: 10.1111/apha.12466
  24. Bennett M.R., Sinha S., Owens G.K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 2016; 118 (4): 692–702. DOI: 10.1161/CIRCRESAHA.115.306361
  25. Mao H., Lockyer P., Townley-Tilson W.H.D., Xie L., Pi X. LRP1 regulates retinal angiogenesis by inhibiting PARP-1 activity and endothelial cell proliferation. Arterioscler. Thromb. Vasc. Biol. 2016; 36: 350–360. DOI: 10.1161/ATVBAHA.115.306713
  26. Hu H., Garcia-Barrio M., Jiang Z.S., Chen Y.E., Chang L. Roles of perivascular adipose tissue in hypertension and atherosclerosis. Antioxidants Redox Signal. 2020; 34: 736–749. DOI: 10.1089/ars.2020.8103
  27. Silvestre-Roig C., Braster Q., Ortega-Gomez A., Soehnlein O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020; 17: 327–340. DOI: 10.1038/s41569-019-0326-7
  28. Liberale L., Bertolotto M., Minetti S., Contini P., Verzola D., Ameri P. et al. Recombinant tissue plasminogen activator (r-tPA) induces in-vitro human neutrophil migration via low density lipoprotein receptor-related protein 1 (LRP-1). Int. J. Mol. Sci. 2020; 21: 7014. DOI: 10.3390/ijms21197014
  29. Panezai J., Bergdahl E., Sundqvist K.G. T-cell regulation through a basic suppressive mechanism targeting low-density lipoprotein receptor- related protein 1. Immunology. 2017; 152: 308–327. DOI: 10.1111/imm.12770
  30. Kamolov I.Kh., Semitko S.P., Chernysheva I.E., Tsereteli N.V., Sandodze T.S., Azarov A.V. Anatomy of the coronary arteries and localization of coronary atherosclerosis in siblings with coronary heart disease. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2023; 65 (2): 214–222 (in Russ.). DOI: 10.24022/0236-2791-2023-65-2-214-222
  31. Bornachea O., Benitez-Amaro A., Vea A., Nasarre L., de Gonzalo-Calvo D., Escola-Gil J.C. et al. Immunization with the Gly (1127) -Cys (1140) amino acid sequence of the LRP1 receptor reduces atherosclerosis in rabbits. Molecular, immunohistochemical and nuclear imaging studies. Theranostics. 2020; 10: 3263–3280. DOI: 10.7150/thno.37305
  32. Toldo S., Austin D., Mauro A.G., Mezzaroma E., Van Tassell B.W., Marchetti C. et al. Low-density lipoprotein receptor-related protein-1 is a therapeutic target in acute myocardial infarction. JACC Basic. Transl. Sc i. 2017; 2: 561–574. DOI: 10.1016/j.jacbts.2017.05.007
  33. Potere N., Del Buono M.G., Niccoli G., Crea F., Toldo S., Abbate A. Developing LRP1 agonists into a therapeutic strategy in acute myocardial infarction. Int. J. Mol. Sci. 2019; 20: 544. DOI: 10.3390/ijms20030544

About Authors

  • Yuriy I. Buziashvili, Dr. Med. Sci., Professor, Academician of the Russian Academy of Sciences, Head of the Clinical Diagnostic Department; ORCID
  • Inna V. Koksheneva, Dr. Med. Sci., Senior Researcher; ORCID
  • Tabarik R. Timerbulatova, Resident Physician; ORCID
  • Sergiy G. Ambatiello, Dr. Med. Sci., Leading Researcher; ORCID
  • Victoria Yu. Buziashvili, Cand. Med. Sci., Junior Researcher; ORCID
  • Alena V. Grishenok, Postgraduate; ORCID
  • Victoria A. Alpenidze, Cand. Med. Sci., Ultrasonic Diagnostician
  • Murat S. Ibragimov, Cand. Med. Sci., Ultrasonic Diagnostician; ORCID
  • Sofia D. Pirtskhalava, Cand. Med. Sci., Cardiologist; ORCID

Chief Editor

Elena Z. Golukhova, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, Director of Bakoulev National Medical Research Center for Cardiovascular Surgery


Sort by