Natural pathophysiological processes of heart aging as a factor in the development of cardiovascular diseases
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, 121552, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Stepanova N.M., Serguladze S.Yu. Natural pathophysiological processes of heart aging as a factor in the development of cardiovascular diseases. Creative Cardiology. 2021; 15 (1): 72–86 (in Russ.). DOI: 10.24022/1997-3187-2021-15-1-72-86
Received / Accepted: 19.03.2021 / 26.03.2021
Keywords: heart pathophysiology of aging atrial fibrillation heart failure frailty
Abstract
An increase in the incidence of cardiovascular diseases (CVD) is directly associated with a patient's age. CVD occur as a result of various modifiable (lifestyle) and non-modifiable (age and heredity) risk factors. An increase in the life expectancy as well as in the percentage of the elderly population in the developed countries has attract-ed the attention of researchers to the role of unmodifiable risk factors in the development of CVD. During the process of aging, changes affect micro- and macroscopic levels of the cardiovascular system, calcium homeostasis, regulation of the adrenergic and the renin-angiotensin-aldosterone systems, and normal functioning of intracellular structures. They lead to the age-related myocardial remodeling, disruption of the cardiac conduction system, and changes in the systolic and diastolic functions of the heart. Structural and functional alterations of vessels accumulate throughout life, culminating in increased risk of developing CVD. The average age of the world's population is increasing at an unprecedented rate and this increase is changing the world. This "silver tsunami" emphasizes the need to provide advanced training in epidemiology and increase the cadre of experts in the study of aging. This review analyses studies performed to investigate the mechanisms of the pathophysiological processes of natural heart aging and their role in the development of CVD.References
- Eurostat Statistics Explained. https://ec.europa.eu/eurostat/statistics-explained (Available at March 26, 2021)
- Sidney S., Quesenberry C.P. Jr, Jaffe M.G., Sorel M., Nguyen-Huynh M.N., Kushi L.H. et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016; 1 (5): 594–9. DOI: 10.1001/jamacardio.2016.1326. PMID: 27438477
- Sidney S., Go A.S., Jaffe M.G., Solomon M.D., Ambrosy A.P., Rana J.S. Association between aging of the US population and heart disease mortality from 2011 to 2017. JAMA Cardiol. 2019; 4 (12): 1280–6. DOI: 10.1001/jamacardio.2019.4187
- Ehrlich P.R., Ehrlich A.H. Can a collapse of global civilization be avoided? Proc. Biol. Sci. 2013; 280 (1754): 20122845. DOI: 10.1098/rspb.2012.2845
- United Nations. Department of Economic and Social Affairs. http://www.un.org/en/development/desa/news/population/2015-report.html (Available at 26.03.2021).
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services. http://wonder.cdc.gov/ucd-icd10.html (Available at 26.03.2021).
- Fryar C.D., Ostchega Y., Hales C.M., Zhang G., Kruszon-Moran D. Hypertension prevalence and control among adults: United States, 2015–2016. NCHS Data Brief. 2017; (289): 1–8. PMID: 29155682
- Wright S.P., Doughty R.N., Pearl A., Gamble G.D., Whalley G.A., Walsh H.J. et al. Plasma amino-terminal pro-brain natriuretic peptide and accuracy of heart-failure diagnosis in primary care: a randomized, controlled trial. J. Am. Coll. Cardiol. 2003; 42 (10): 1793–800. DOI: 10.1016/j.jacc.2003.05.011
- Oudejans I., Mosterd A., Bloemen J.A., Valk M.J., van Velzen E., Wielders J.P. et al. Clinical evaluation of geriatric outpatients with suspected heart failure: value of symptoms, signs, and additional tests. Eur. J. Heart Fail. 2011; 13 (5): 518–27. DOI: 10.1093/eurjhf/hfr021
- Goodnough L.T., Schrier S.L. Evaluation and management of anemia in the elderly. Am. J. Hematol. 2014; 89 (1): 88–96. DOI: 10.1002/ajh.23598
- Anker S.D., Kirwan B.A., van Veldhuisen D.J., Filippatos G., Comin-Colet J., Ruschitzka F. et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur. J. Heart Fail. 2018; 20 (1): 125–33. DOI: 10.1002/ejhf.823
- Bansal N., Katz R., Robinson-Cohen C., Odden M.C., Dalrymple L, Shlipak M.G. et al. Absolute rates of heart failure, coronary heart disease, and stroke in chronic kidney disease: An analysis of 3 community-based cohort studies. JAMA Cardiol. 2017; 2 (3): 314–8. DOI: 10.1001/jamacardio.2016.4652
- Thadhani R., Appelbaum E., Pritchett Y., Chang Y., Wenger J., Tamez H. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012; 307 (7): 674–84. DOI: 10.1001/jama.2012.120
- Evans M., Methven S., Gasparini A., Barany P., Birnie K., MacNeill S. et al. Cinacalcet use and the risk of cardiovascular events, fractures and mortality in chronic kidney disease patients with secondary hyperparathyroidism. Sci. Rep. 2018; 8 (1): 2103. DOI: 10.1038/s41598-018-20552-5
- Antonicelli R., Spazzafumo L., Scalvini S., Olivieri F., Matassini M.V., Parati G. et al. Exercise: a "new drug" for elderly patients with chronic heart failure. Aging (Albany NY). 2016; 8 (5): 860–72. DOI: 10.18632/aging.100901
- Dokainish H., Nguyen J.S., Bobek J., Goswami R., Lakkis N.M. Assessment of the American Society of Echocardiography – European Association of Echocardiography guidelines for diastolic function in patients with depressed ejection fraction: An echocardiographic and invasive haemodynamic study. Eur. J. Echocardiogr. 2011; 12 (11): 857–64. DOI: 10.1093/ejechocard/jer157
- Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G., Coats A.J. et al.; Authors/Task Force Members; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016; 18 (8): 891–975. DOI: 10.1002/ejhf.592
- Redfield M.M. Heart failure with preserved ejection fraction. N. Engl. J. Med. 2016; 375 (19): 1868–77. DOI: 10.1056/NEJMcp1511175
- Bozkurt B., Khalaf S. Heart failure in women. Methodist DeBakey Cardiovasc J. 2017; 13 (4): 216–23. DOI: 10.14797/mdcj-13-4-216 20. Smulyan H., Mookherjee S., Safar M.E. The two faces of hypertension: role of aortic stiffness. J. Am. Soc. Hypertens. 2016; 10 (2): 175–83. DOI: 10.1016/j.jash.2015.11.012
- Angeli F., Reboldi G., Verdecchia P. Heart failure, pulse pressure and heart rate: Refining risk stratification. Int. J. Cardiol. 2018; 271: 206–8. DOI: 10.1016/j.ijcard.2018.07.072
- Tunbridge M., Holdaas H., Jardine A.G. Pulse pressure: A risk factor for renal transplant failure or a useful therapeutic target? Transplantation. 2019; 103 (4): 662–3. DOI: 10.1097/TP.0000000000002441
- Böckmann I., Lischka J., Richter B., Deppe J., Rahn A., Fischer D.C. et al. FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int. J. Mol. Sci. 2019; 20 (18): 4634. DOI: 10.3390/ijms20184634
- Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac fibrosis: The fibroblast awakens. Circ. Res. 2016; 118 (6): 1021–40. DOI: 10.1161/CIRCRESAHA.115.306565
- Tesauro M., Mauriello A., Rovella V., Annicchiarico-Petruzzelli M., Cardillo C., Melino G., Di Daniele N. Arterial ageing: From endothelial dysfunction to vascular calcification. J. Intern. Med. 2017; 281 (5): 471–82. DOI: 10.1111/joim.12605
- Staessen J.A., Gasowski J., Wang J.G., Thijs L., Den Hond E., Boissel J.P. et al. Risks of untreated and treated isolated systolic hypertension in the elderly: Meta-analysis of outcome trials. Lancet. 2000; 355 (9207): 865–72. DOI: 10.1016/s0140-6736(99)07330-4
- Cook N.R., Appel L.J., Whelton P.K. Sodium intake and all-cause mortality over 20 years in the trials of hypertension prevention. J. Am. Coll. Cardiol. 2016; 68 (15): 1609–17. DOI: 10.1016/j.jacc.2016.07.745
- Bhatt D.L. Troponin and the J-curve of diastolic blood pressure: When lower is not better. J. Am. Coll. Cardiol. 2016; 68 (16): 1723–6. DOI: 10.1016/j.jacc.2016.08.007
- Beckett N.S., Peters R., Fletcher A.E., Staessen J.A., Liu L., Dumitrascu D. et al.; HYVET Study Group. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 2008; 358 (18): 1887–98. DOI: 10.1056/NEJMoa0801369
- Khan N.A., Rabkin S.W., Zhao Y., McAlister F.A., Park J.E., Guan M. et al. Effect of lowering diastolic pressure in patients with and without cardiovascular disease: Analysis of the SPRINT (Systolic Blood Pressure Intervention Trial). Hypertension. 2018; 71 (5): 840–7. DOI: 10.1161/HYPERTENSIONAHA.117.10177
- Fuster V. No such thing as ideal blood pressure: A case for personalized medicine. J. Am. Coll. Cardiol. 2016; 67 (25): 3014–5. DOI: 10.1016/j.jacc.2016.05.005
- Konukoglu D., Uzun H. Endothelial dysfunction and hypertension. Adv. Exp. Med. Biol. 2017; 956: 511–40. DOI: 10.1007/5584_2016_90
- Durrant J.R., Seals D.R., Connell M.L., Russell M.J., Lawson B.R., Folian B.J. et al. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J. Physiol. 2009; 587 (Pt 13): 3271–85. DOI: 10.1113/jphysiol.2009.169771
- Zhao Y., Vanhoutte P.M., Leung S.W. Vascular nitric oxide: Beyond eNOS. J. Pharmacol. Sci. 2015; 129 (2): 83–94. DOI: 10.1016/j.jphs.2015.09.002
- Wang H., Hartnett M.E. Roles of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase in angiogenesis: isoform-specific effects. Antioxidants (Basel). 2017; 6 (2): 40. DOI: 10.3390/antiox6020040
- Te Riet L., van Esch J.H., Roks A.J., van den Meiracker A.H., Danser A.H. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res. 2015; 116 (6): 960–75. DOI: 10.1161/CIRCRESAHA.116.303587
- Gureev A.P., Shaforostova E.A., Popov V.N. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front. Genet. 2019; 10: 435. DOI: 10.3389/fgene.2019.00435
- Saxena T., Ali A.O., Saxena M. Pathophysiology of essential hypertension: an update. Expert. Rev. Cardiovasc. Ther. 2018; 16 (12): 879–87. DOI: 10.1080/14779072.2018.1540301
- Paneni F., Diaz Cañestro C., Libby P., Lüscher T.F., Camici G.G. The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels. J. Am. Coll. Cardiol. 2017; 69 (15): 1952–67. DOI: 10.1016/j.jacc.2017.01.064
- Niiranen T.J., Kalesan B., Hamburg N.M., Benjamin E.J., Mitchell G.F., Vasan R.S. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: The Framingham Heart Study. J. Am. Heart. Assoc. 2016; 5 (11): e004271. DOI: 10.1161/JAHA.116.004271
- Fleg J.L., Strait J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail. Rev. 2012; 17: 545–54. DOI: 10.1007/s10741-011-9270-2
- Vorob'eva N.M., Tkacheva O.N. An elderly patient with atrial fibrillation: ways to enhance safety of anticoagulant therapy. Doctor.Ru. 2019; 10 (165): 16–22. DOI: 10.31550/1727-2378-2019-165-10- 16-22 (in Russ.).
- Zholbaeva A.Z., Tabina A.E., Golukhova E.Z. Molecular mechanisms of atrial fibrillation: “ideal” marker searching. Creative Cardiology. 2015; 2: 40–53. DOI: 10.15275/kreatkard.2015. 02.04 (in Russ.).
- Dun W., Boyden P.A. Aged atria: Electrical remodeling conducive to atrial fibrillation. J. Interv. Card. Electrophysiol. 2009; 25: 9–18. DOI: 10.1007/s10840-008-9358-3
- Bockeria L.A., Shengeliya L.D. Changes in the heart associated with atrial fibrillation. Part I. Cardiopathy of atrial fibrillation: new dilemmas and old problems. Annals of Arrhythmology. 2016; 13 (3): 138–47. DOI: 10.15275/annaritmol.2016. 3.2 (in Russ.).
- Packer M., McMurray J.J.V. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the reninangiotensin system for the treatment of heart failure. Lancet. 2017; 389 (10081): 1831–40. DOI: 10.1016/S0140-6736(16)30969-2
- Pfeffer M.A., Claggett B., Assmann S.F., Boineau R., Anand I.S., Clausell N. et al. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist (TOPCAT) trial. Circulation. 2015; 131 (1): 34–42. DOI: 10.1161/CIRCULATIONAHA.114.013255
- Solomon S.D., Zile M., Pieske B., Voors A., Shah A., Kraigher-Krainer E. et al.; Prospective comparison of ARNI with ARB on Management of heart failure with preserved ejection fraction (PARAMOUNT) Investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: A phase 2 double-blind randomised controlled trial. Lancet. 2012; 380 (9851): 1387–95. DOI: 10.1016/S0140- 6736(12)61227-6
- Butler J., Hamo C.E., Filippatos G., Pocock S.J., Bernstein R.A., Brueckmann M. et al.; EMPEROR Trials Program. The potential role and rationale for treatment of heart failure with sodiumglucose co-transporter 2 inhibitors. Eur. J. Heart. Fail. 2017; 19 (11): 1390–400. DOI: 10.1002/ejhf.933
- Dekkers C.C.J., Sjöström C.D., Greasley P.J., Cain V., Boulton D.W., Heerspink H.J.L. Effects of the sodium-glucose co-transporter-2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabetes Obes Metab. 2019; 21 (12): 2667–73. DOI: 10.1111/dom.13855
- Matsutani D., Sakamoto M., Kayama Y., Takeda N., Horiuchi R., Utsunomiya K. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes. Cardiovasc. Diabetol. 2018; 17 (1): 73. DOI: 10.1186/s12933-018-0717-9
- Mudaliar S., Alloju S., Henry R.R. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis. Diabetes Care. 2016; 39 (7): 1115–22. DOI: 10.2337/dc16-0542
- Crawford P.A. Refueling the Failing Heart: A Case for Sodium-Glucose Cotransporter 2 Inhibition in Cardiac Energy Homeostasis. JACC Basic Transl. Sci. 2018; 3 (5): 588–90. DOI: 10.1016/j.jacbts. 2018.08.002
- Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprog-ramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mecha-nism of Action. Diabetes Care. 2020; 43 (3): 508–11. DOI: 10.2337/dci19-0074. PMID: 32079684
- Shigiyama F., Kumashiro N., Miyagi M., Ikehara K., Kanda E, Uchino H., Hirose T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol. 2017; 16 (1): 84. DOI: 10.1186/s12933-017-0564-0
- Lambadiari V., Pavlidis G., Kousathana F., Maratou E., Georgiou D., Andreadou I. et al. Effects of different antidiabetic medications on endothelial glycocalyx, myocardial function, and vascular function in type 2 diabetic patients: One year follow-up study. J. Clin. Med. 2019; 8 (7): 983. DOI: 10.3390/jcm8070983
- Lee T.M., Chang N.C., Lin S.Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 2017; 104: 298–310. DOI: 10.1016/j.freeradbiomed.2017.01.035
- Habibi J., Aroor A.R., Sowers J.R., Jia G., Hayden M.R., Garro M. et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc. Diabetol. 2017; 16 (1): 9. DOI: 10.1186/s12933-016-0489-z