Long-term coagulation abnormalities after COVID-19
Authors:
Company:
1 Davydovskiy City Clinical Hospital of Moscow Department of Health, Moscow, Russian Federation
2 Department of Cardiology of Moscow State University of Medicine and Dentistry named after A.I. Evdokimov of Ministry of Health of the Russian Federation, Moscow, Russian Federation
3 InfoNet Mobil Limited Liability Company, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Original articles
DOI:
For citation: Artem’eva G.A., Kalinskaya A.I., Mal’tseva A.S., Artem’ev A.I., Rozin A.N., Lebedeva A.Yu., Vasilieva E.Yu. Long-term coagulation abnormalities after COVID-19. Creative Cardiology. 2021; 15 (3): 377–88 (in Russ.). DOI: 10.24022/1997-3187-2021-15-3-377-388
Received / Accepted: 28.07.2021 / 25.08.2021
Keywords: COVID-19 thrombus formation fibrinolysis post-COVID-19 syndrome
Abstract
Objective: Hypercoagulation and high incidence of thrombosis during COVID-19 is well established. However, there is a lack of data, how it changes over time. The main purpose of our study was to access different parts of hemostasis in few months after acute disease.
Material and methods. Patients discharged from our hospital were invited for follow up examination in 2,3–3,8 (group 1 – 55 pts) or 4,6–5,7 months (group 2 – 45 pts) after admission. Control group (37 healthy adults) had been collected before pandemic started. Standard coagulation tests, aggregometry, thrombodynamics and fibrinolysis results were compared between groups.
Results: D-dimer was significantly higher, and was APPT was significantly lower in group 2 compared to group 1, while fibrinogen, prothrombin levels didn’t differ. Platelet aggregation induced by ASA, ADP, TRAP, spontaneous aggregation didn’t differ significantly between groups. Thrombodynamics revealed hypocoagulation in both group 1 and group 2 compared to control: V, μm/min 27,3 (Interquartile range (IQR) 26,3; 29,4) and 28,3 (IQR 26,5; 30,1) vs. 32,6 (IQR 30,4; 35,9) respectively; all р < 0,001. Clot size and density in both group 1 and group 2 were significantly lower than in control group. Fibrinolysis appeared to be enhanced in x2 compared to control and group 1. Lysis progression, %/min was higher: 3,5 (2,5; 4,8) vs. 2,4 (1,6; 3,5) and 2,6 (2,2; 3,4) respectively, all р < 0,05. Lysis onset time in both group 1 and group 2 was significantly shorter compared to control.
Conclusion: We revealed normalization of parameters of clot formation process in 2–6 months after COVID-19, while fibrinolysis remained still enhanced. Further study is required to investigate the clinical significance of these changes.
References
- Helms J., Tacquard C., Severac F., LeonardLorant I., Ohana M., Delabranche X. et al. CRICS TRIGGERSEP Group. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020; 46 (6): 1089–98. DOI: 10.1007/s00134-020-06062-x
- Moll M., Zon R.L., Sylvester K.W., Chen E.C., Cheng V., Connell N.T. et al. VTE in ICU patients with COVID-19. Chest. 2020; 158 (5): 2130–5. DOI: 10.1016/j.chest.2020.07.031
- Chen B., Jiang C., Han B., Guan C., Fang G., Yan S. et al. High prevalence of occult thrombosis in cases of mild/moderate COVID-19. Int. J. Infect. Dis. 2021; 104: 77–82. DOI: 10.1016/j.ijid.2020.12.042
- McBane R.D. 2nd. Arterial thrombosis and coronavirus disease 2019. Mayo Clin. Proc. 2021; 96 (2): 274–6. DOI: 10.1016/j.mayocp.2020.12.009
- Carsana L., Sonzogni A., Nasr A., Rossi R.S., Pellegrinelli A., Zerbi P. et al. Pulmonary postmortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. 2020; 20: 1135–40. DOI: 10.1016/S1473-3099(20)30434-5
- Su H., Yang M., Wan C., Yi L.X., Tang F., Zhu H.Y. et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020; 98 (1): 219–27. DOI: 10.1016/j.kint.2020.04.003
- Liao D., Zhou F., Luo L., Xu M., Wang H., Xia J. et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol. 2020; 7 (9): e671–8. DOI: 10.1016/S2352-3026(20)30217-9
- Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3
- Wright F.L., Vogler T.O., Moore E.E., Moore H.B., Wohlauer M.V., Urban S. et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J. Am. Coll. Surg. 2020; 231 (2): 193–203.e1. DOI: 10.1016/j.jamcollsurg.2020.05.007
- Ranucci M., Ballotta A., Di Dedda U., Bayshnikova E., Dei Poli M., Resta M. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020; 18 (7): 1747–51. DOI: 10.1111/jth.14854
- Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (4): 844–7. DOI: 10.1111/jth.14768
- Bowles L., Platton S., Yartey N., Dave M., Lee K., Hart D.P. et al. Lupus anticoagulant and abnormal coagulation tests in patients with COVID-19. N. Engl. J. Med. 2020; 383 (3): 288–90. DOI: 10.1056/NEJMc2013656
- Von Meijenfeldt F.A., Havervall S., Adelmeijer J., Lundström A., Magnusson M., Mackman N. et al. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood. Adv. 2021; 5 (3): 756–9. DOI: 10.1182/bloodadvances.2020003968
- Bareille M., Hardy M., Douxfils J., Roullet S., Lasne D., Levy J.H. et al. Viscoelastometric testing to assess hemostasis of COVID-19: a systematic review. J. Clin. Med. 2021; 10 (8): 1740. DOI: 10.3390/jcm10081740
- Kalinskaya A., Dukhin O., Molodtsov I., Maltseva A., Sokorev D., Elizarova A. et al. Dynamics of coagulopathy in patients with different COVID-19 severity. medRxiv [Preprint]. 2020: 2020.07.02. 20145284. DOI: 10.1101/2020.07.02.20145284
- Nougier C., Benoit R., Simon M., Desmurs-Clavel H., Marcotte G., Argaud L. et al. Hypofibrinolytic state and high thrombin generation may play a major role in SARS-COV2 associated thrombosis. J. Thromb. Haemost. 2020; 18 (9): 2215–9. DOI: 10.1111/jth.15016
- Zuo Y., Warnock M., Harbaugh A., Yalavarthi S., Gockman K., Zuo M. et al. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized COVID-19 patients. Sci. Rep. 2021; 11 (1): 1580. DOI: 10.1038/s41598-020-80010-z
- Nagashima S., Mendes M.C., Camargo Martins A.P., Borges N.H., Godoy T.M., Miggiolaro A.F.R.D.S. et al. Endothelial dysfunction and thrombosis in patients with COVID-19-brief report. Arterioscler. Thromb. Vasc. Biol. 2020; 40 (10): 2404–7. DOI: 10.1161/ATVBAHA.120.314860
- Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020; 383 (2): 120–8. DOI: 10.1056/NEJMoa2015432
- Roberts L.N., Whyte M.B., Georgiou L., Giron G., Czuprynska J., Rea C. et al. Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood. 2020; 136 (11): 1347–50. DOI: 10.1182/blood.2020008086
- Giannis D., Allen S.L., Tsang J., Flint S., Pinhasov T., Williams S. et al. Postdischarge thromboembolic outcomes and mortality of hospitalized patients with COVID-19: the CORE-19 registry. Blood. 2021; 137 (20): 2838–47. DOI: 10.1182/blood.2020010529
- Spyropoulos A.C., Anderson F.A., Jr., FitzGerald G., Decousus H., Pini M., Chong B.H. et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011; 140 (3): 706–14. DOI: 10.1378/chest.10-1944
- Spyropoulos A.C., Lipardi C., Xu J., Peluso C., Spiro T.E., De Sanctis Y. et al. Modified IMPROVE VTE risk score and elevated D-dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. TH Open. 2020; 4 (1): e59–65. DOI: 10.1055/s-0040-1705137
- Cohen A.T., Harrington R.A., Goldhaber S.Z., Hull R.D., Wiens B.L., Gold A. et al. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N. Engl. J. Med. 2016; 375 (6): 534–44. DOI: 10.1056/NEJMoa1601747
- National Institutes of Health. Antithrombotic therapy in patients with COVID-19. Updated May 12, 2020.
- Министерство здравоохранения Российской Федерации. Временные методические рекомендации профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). [Ministry of Health of the Russian Federation. Interim guidelines for the prevention, diagnosis and treatment of novel coronavirus infection (COVID-19). Version 11 (05.07.2021) (in Russ.).
- Huang C., Huang L., Wang Y., Li X., Ren L., Gu X. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021; 397 (10270): 220–32. DOI: 10.1016/S0140-6736(20)32656-8
- Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020; 81 (6): e4–6. DOI: 10.1016/j.jinf.2020.08.029
- Prescott H.C., Angus D.C. Enhancing recovery from sepsis: a review. JAMA. 2018; 319 (1): 62–75. DOI: 10.1001/jama.2017.17687
- Liu M., Lv F., Huang Y., Xiao K. Follow-up study of the chest ct characteristics of COVID-19 survivors seven months after recovery. Front. Med. (Lausanne). 2021; 8: 636298. DOI: 10.3389/fmed.2021.636298
- Miskowiak K.W., Johnsen S., Sattler S.M., Nielsen S., Kunalan K., Rungby J., Lapperre T., Porsberg C.M. Cognitive impairments four months after COVID-19 hospital discharge: pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021; 46: 39–48. DOI: 10.1016/j.euroneuro.2021.03.019
- Townsend L., Dowds J., O'Brien K., Sheill G., Dyer A.H., O'Kelly B. et al. Persistent poor health after COVID-19 is not associated with respiratory complications or initial disease severity. Ann. Am. Thorac. Soc. 2021; 18 (6): 997–1003. DOI: 10.1513/AnnalsATS.202009-1175OC
- Mandal S., Barnett J., Brill S.E., Brown J.S., Denneny E.K., Hare S.S. et al. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021; 76 (4): 396–8. DOI: 10.1136/thoraxjnl-2020-215818
- Venturelli S., Benatti S.V., Casati M., Binda F., Zuglian G., Imeri G. et al. Surviving COVID-19 in Bergamo province: a post-acute outpatient reevaluation. Epidemiol. Infect. 2021; 149:e32. DOI: 10.1017/S0950268821000145
- Townsend L., Fogarty H., Dyer A., Martin-Loeches I., Bannan C., Nadarajan P. et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021; 19 (4): 1064–70. DOI: 10.1111/jth.15267
- Magomedov A., Zickler D., Karaivanov S., Kurreck A., Münch F.H., Kamhieh-Milz J. et al. Viscoelastic testing reveals normalization of the coagulation profile 12 weeks after severe COVID-19. Sci. Rep. 2021; 11 (1): 13325. DOI: 10.1038/s41598-021-92683-1
About Authors
- Galina A. Artem’eva, Therapist; ORCID
- Anna I. Kalinskaya, Associate Professor, Cand. Med. Sci., Head of Department; ORCID
- Aleksandra S. Mal’tseva, Resident Physician; ORCID
- Aleksandr I. Artem’ev, Leading Mathematical Analyst; ORCID
- Aleksandr N. Rozin, Cand. Med. Sci., Head of Department; ORCID
- Anastasiya Yu. Lebedeva, Dr. Med. Sci., Professor, Deputy Chief Physician; ORCID
- Elena Yu. Vasilieva, Dr. Med. Sci., Professor, Head of Laboratory, Chief Physician; ORCID