Emergency coronary revascularization of the left coronary bifurcation lesion with complex anatomy under optical coherence tomography guidance

Authors: Petrosian K.V., Losev V.V., Golukhova E.Z.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Case reports


DOI: https://doi.org/10.24022/1997-3187-2021-15-4-524-533

For citation: Petrosian K.V., Losev V.V., Golukhova E.Z. Emergency coronary revascularization of the left coronary bifurcation lesion with complex anatomy under optical coherence tomography guidance. Creative Cardiology. 2021; 15 (4): 524–33 (in Russ.). DOI: 10.24022/1997-3187-2021-15-4-524-533

Received / Accepted:  20.02.2021 / 02.12.2021

Keywords: percutaneous coronary arteries optical coherence tomography stenting of coronary arteries

Download
Full text:  

 

Abstract

Percutaneous coronary intervention (PCI) is the primary treatment of acute coronary syndrome in modern practice. Emergency hospitalisation of the patient “from the door to the cathlab” during the shortest time interval is the primary strategy for reducing the incidence of major cardiovascular complications and minimising consequences of ischemia for the myocardium. The main challenge in managing patients with the acute coronary syndrome (ACS) for an interventional cardiologist is the unknown, namely: the unknown anatomy of the coronary arteries, the nature and exact extent of the lesion, and the reliable cause of the development of acute vascular occlusion. In this regard, the use of invasive methods of intravascular imaging, in particular optical coherence tomography, can not only guide the operating surgeon, but also radically change the strategy and approach to performing PCI with maximum benefit for the patient, guided by the principle – “I see it, and now I can treat it”. This case report describes a complex endovascular myocardial revascularisation in an aged patient with ACS with atypical coronary anatomy.

References

  1. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on myocardial revascularisation. Eur. Heart J. 2019; 40 (2): 87–165. DOI: 10.1093/eurheartj/ehy394
  2. Campanile A., Castellani C., Santucci A., Annunziata R., Tutarini C., Reccia M.R. et al. Predictors of in-hospital and long-term mortality in unselected patients admitted to a modern coronary care unit. J. Cardiovasc. Med. (Hagerstown). 2019; 20 (5): 327–34. DOI: 10.2459/JCM.0000000000000785
  3. Voudris K.V., Kavinsky C.J. Advances in management of stable coronary artery disease: the role of revascularisation? Curr. Treat. Options Cardiovasc. Med. 2019; 21 (3): 15. DOI: 10.1007/s11936-019- 0720-9
  4. Zhu Y., Lin L., Wang C., Jia H., Hu S., Li L. et al. Impact of statins therapy on morphological changes in lipid-rich plaques stratified by 10 year Framingham risk score: A serial optical coherence tomography study. Oncotarget. 2017; 8 (16): 27401–11. DOI: 10.18632/oncotarget.16172
  5. Bockeria L.A., Losev V.V., Petrosyan K.V., Bockeria O.L., Karaev A.V. The influence of specific anatomical and histological factorsdetected by intraoperative optical coherent tomography on intermediate and long-term results of the viability of coronary grafts. Russian Journal of Thoracic and Cardiovascular Surgery. 2019; 61 (3): 209–14 (in Russ.). DOI: 10.24022/0236-2791-2019-61-3-209-214
  6. Petrosyan K.V. Report of the endovascular diagnostics and treatment department about scientific and clical practice in 2018. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (5): 427–33 (in Russ.). DOI: 10.24022/1810-0694- 2019-20-5-427-433
  7. Bockeria L.A., Golukhova E.Z., Petrosyan K.V., Karaev A.V., Grigoryan M.R., Losev V.V. Spontaneous coronary dissection: case reports and literature review. Creative Cardiology. 2020; 14 (1): 71–81 (in Russ.). DOI: 10.24022/1997-3187-2020-14-1-71-81
  8. Kubo T., Ino Y., Mintz G.S., Shiono Y., Shimamura K., Takahata M. et al. Optical coherence tomography detection of vulnerable plaques at high risk of developing acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging. 2021; 22 (12): 1376–84. DOI: 10.1093/ehjci/jeab028. Epub ahead of print. PMID: 33619524
  9. Leistner D.M., Kränkel N., Meteva D., Abdelwahed Y.S., Seppelt C., Stähli B.E. et al. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur. Heart J. 2020; 41 (37): 3549–60. DOI: 10.1093/eurheartj/ehaa703
  10. Park D.W., Clare R.M., Schulte P.J., Pieper K.S., Shaw L.K., Califf R.M., et al. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with STelevation myocardial infarction. JAMA. 2014; 312: 2019–27. DOI: 10.1001/jama.2014.15095
  11. Soraja P., Gersh B.J., Cox D.A., McLaughlin M.G., Zimetbaum P., Costantini C. et al. Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur. Heart J. 2007; 28: 1709–16. DOI: 10.1093/eurheartj/ehm184
  12. Santos A.R., Picarra B.C., Celeiro M., Bento Â., Aguiar J. Multivessel approach in ST elevation myocardial infarction: impact on in hospital morbidity and mortality. Rev. Port. Cardiol. 2014; 33: 67–73. DOI: 10.1016/j.repc.2013.07.015
  13. Lee J.M., Rhee T.M., Hahn J.Y., Kim H.K., Park J., Hwang D. et al. Multivessel percutaneous coronary intervention in patients with STEMI with cardiogenic shock. J. Am. Coll. Cardiol. 2018; 71: 844–56. DOI: 10.1016/j.jacc.2017.12.028
  14. Collet J.P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D.L. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2021; 42 (14): 1289–367. DOI: 10.1093/eurheartj/ehaa575
  15. Kume T., Akasaka T., Kawamoto T., Okura H., Watanabe N., Toyota E. et al. Measurement on the thikness of the fibrous cap by optical coherence tomography. Am. Heart J. 2006; 152: e1–4. DOI: 10.1016/j.ahj.2006.06.030
  16. Takarada S., Imanishi T., Kudo T., Tanimoto T., Kitabata H., Nakamura N. et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis. 2009; 202: 491–7. DOI: 10.1016/j.atherosclerosis.2008.05.014
  17. Guagliumi G., Capodanno D., Saia F., Musumeci G., Tarantini G., Garbo R. et al. Mechanisms of atherothrombosis and vascular response to primary percutaneous coronary intervention in women versus men with acute myocardial infarction: results of the OCTAVIA study. JACC Cardiovasc. Interv. 2014; 7: 958–68. DOI: 10.1016/j.jcin.2014.05.011

About Authors

  • Karen V. Petrosian, Dr. Med. Sci., Head of the Department; ORCID
  • Vladimir V. Losev, Cand. Med. Sci., Endovascular Surgeon; ORCID
  • Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of RAS, Director; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery