Multislice computed tomography in the diagnosis of myocardial bridges

Authors: Berdibekov B.Sh., Aleksandrova S.A., Bulaeva N.I., Golukhova E.Z.

Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation

For correspondence:  Sign in or register.

Type:  Reviews


DOI: https://doi.org/10.24022/1997-3187-2022-16-4-455-469

For citation: Berdibekov B.Sh., Aleksandrova S.A., Bulaeva N.I., Golukhova E.Z. Multislice computed tomography in the diagnosis of myocardial bridges. Creative Cardiology. 2022; 16 (4): 455–69 (in Russ.). DOI: 10.24022/1997-3187-2022-16-4-455-469

Received / Accepted:  23.10.2022 / 17.11.2022

Keywords: multislice computed tomography myocardial bridges computed tomography coronary angiography

Download
Full text:  

 

Abstract

Myocardial bridges (MB) is the most frequent congenital coronary anomaly in which a segment of an epicardial coronary artery taking an intra-myocardial course also described as tunneled artery. MBs are most commonly localized in the middle segment of the left anterior descending coronary artery. The majority of patients with this coronary anomaly are asymptomatic and generally it is a benign condition. However, it is an important cause of myocardial ischemia, which may lead to anginal symptoms, acute coronary syndrome, cardiac arrhythmias and rarely sudden cardiac death. The advent of contemporary non-invasive and invasive imaging modalities and the standardization of intracoronary functional assessment tools have remarkably improved our understanding of MB-related ischemia. Multislice computed tomography (MSCT) is one of the most informative methods for assessing the anatomical and functional characteristics of the heart and blood vessels. This review article presents current literature data the role MSCT in the diagnosis and functional evaluation one of the most frequent congenital pathologies of the coronary arteries – myocardial bridges.

References

  1. Bockeria L.А., Sukhanov S.G., Sternik L.I., Shatakhyan M.P. Myocardial bridges. Moscow; 2013: 1–158 (in Russ.).
  2. Bockeria L.A., Bockeria O.L., Mozhina A.A., Tetvadze I.V. Myocardial muscle bridges. Embryology, anatomy, pathophysiology. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2010; 11 (1): 62–71 (in Russ.).
  3. Ciliberti G., Laborante R., Di Francesco M., Restivo A., Rizzo G., Galli M. et al. Comprehensive functional and anatomic assessment of myocardial bridging: unlocking the Gordian Knot. Front. Cardiovasc. Med. 2022; 9: 970422. DOI: 10.3389/fcvm.2022.970422
  4. Chizhova A.V., Loginov M.O., Bashirov I.I., Suleimanov M.M., Shchekin V.S., Stolyarenko A.P. Myocardial bridge – a variant of normal anatomy or pathology? Case report. Morphological Newsletter. 2021; 29 (1): 55–61 (in Russ.). DOI: 10.20340/mv-mn.2021.29(1).55-61
  5. Matta A., Roncalli J., Carrié D. Update review on myocardial bridging: new insights. Trends Cardiovasc. Med. 2022. DOI: 10.1016/j.tcm.2022.06.002
  6. Ansheles A.A., Sergienko I.V., Sergienko V.B. Current state and future technologies of nuclear imaging in cardiology. Kardiologiia. 2018; 58 (6): 61–9 (in Russ.). DOI: 10.18087/cardio.2018.6.10134
  7. Kwan B., Singh A. Acute coronary syndrome caused by myocardial bridging. Am. J. Emerg. Med. 2022; 52: 272.e1–272.e3. DOI: 10.1016/j.ajem.2021.08.080
  8. Hostiuc S., Rusu M.C., Hostiuc M., Negoi R.I., Negoi I. Cardiovascular consequences of myocardial bridging: a meta-analysis and meta-regression. Sci. Rep. 2017; 7 (1): 14644. DOI: 10.1038/s41598- 017-13958-0
  9. Abbasov E.F., Manafov S.S., Abdullayev F.Z., Abbasov F.E., Akhundova A.G. Epidemiology of coronary abnormalities of discharge and branching and their clinical significance. Medical Visualization. 2018; 22 (6): 40–50 (in Russ.). DOI: 10.24835/1607-0763-2018-6-40-50
  10. Möhlenkamp S., Hort W., Ge J., Erbel R. Update on myocardial bridging. Circulation. 2002; 106 (20): 2616–22. DOI: 10.1161/01.cir.0000038420.14867.7a
  11. Sternheim D., Power D.A., Samtani R., Kini A., Fuster V., Sharma S. Myocardial bridging: diagnosis, functional assessment, and management. JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021; 78 (22): 2196–212. DOI: 10.1016/j.jacc.2021.09.859
  12. Alegria J.R., Herrmann J., Holmes D.R. Jr, Lerman A., Rihal C.S. Myocardial bridging. Eur. Heart J. 2005; 26 (12): 1159–68. DOI: 10.1093/eurheartj/ehi203
  13. Forsdahl S.H., Rogers I.S., Schnittger I., Tanaka S., Kimura T., Pargaonkar V.S. et al. Myocardial bridges on coronary computed tomography angiography – correlation with intravascular ultrasound and fractional flow reserve. Circ. J. 2017; 81 (12): 1894–900. DOI: 10.1253/circj.CJ-17-0284
  14. Okamura A., Okura H., Iwai S., Kyodo A., Kamon D., Hashimoto Y. et al. Detection of myocardial bridge by optical coherence tomography. Int. J. Cardiovasc. Imaging. 2022. DOI: 10.1007/s10554-021-02497-5
  15. Kim P.J., Hur G., Kim S.Y., Namgung J., Hong S.W., Kim Y.H. et al. Frequency of myocardial bridges and dynamic compression of epicardial coronary arteries: a comparison between computed tomography and invasive coronary angiography. Circulation. 2009; 119 (10): 1408–16. DOI: 10.1161/CIRCULATIONAHA.108.788901
  16. Leschka S., Koepfli P., Husmann L., Plass A., Vachenauer R., Gaemperli O. et al. Myocardial bridging: depiction rate and morphology at CT coronary angiography – comparison with conventional coronary angiography. Radiology. 2008; 246 (3): 754–62. DOI: 10.1148/radiol.2463062071
  17. Wang M.H., Sun A.J., Qian J.Y., Ling Q.Z., Zeng M.S., Ge L. et al. Myocardial bridging detection by non-invasive multislice spiral computed tomography: comparison with intravascular ultrasound. Chin. Med. J. (Engl). 2008; 121 (1): 17–21.
  18. Torii S., Virmani R., Finn A. Myocardial bridge and the progression of atherosclerotic plaque in the proximal segment. Arterioscler. Thromb. Vasc. Biol. 2018; 38 (6): 1250–1. DOI: 10.1161/ATVBAHA.118.311065
  19. Konen E., Goitein O., Sternik L., Eshet Y., Shemesh J., Di Segni E. The prevalence and anatomical patterns of intramuscular coronary arteries: a coronary computed tomography angiographic study. J. Am. Coll. Cardiol. 2007; 49 (5): 587–93. DOI: 10.1016/j.jacc.2006.09.039
  20. Hostiuc S., Negoi I., Rusu M.C., Hostiuc M. Myocardial bridging: a meta-analysis of prevalence. J. Forensic. Sci. 2018; 63 (4): 1176–85. DOI: 10.1111/1556-4029.13665
  21. Görmeli C.A., Yagmur J., Özdemir R., Özdemir Z., Kahraman A. et al. Comparison of myocardial bridging prevalence using 64-slice versus 256- slice computed tomography scanners: what has changed with recent innovations in CT? Biomed. Res. 2016; 27 (3): 954–8.
  22. Gognieva D.G., Syrkin A.L., Vassilevski Yu.V., Simakov S.S., Melerzanov A.V., Fuyou L. et al. Noninvasive assessment of fractional flow reserve using mathematical modeling of coronary flow. Kardiologiia. 2018; 58 (12): 85–92 (in Russ.). DOI: 10.18087/cardio.2018.12.10164
  23. Escaned J., Cortés J., Flores A., Goicolea J., Alfonso F., Hernández R. et al. Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J. Am. Coll. Cardiol. 2003; 42 (2): 226–33. DOI: 10.1016/s0735-1097(03)00588-6
  24. Pargaonkar V.S., Kimura T., Kameda R., Tanaka S., Yamada R., Schwartz J.G. et al. Invasive assessment of myocardial bridging in patients with angina and no obstructive coronary artery disease. EuroIntervention. 2021; 16 (13): 1070–8. DOI: 10.4244/EIJ-D-20-00779
  25. Aleksandric S.B., Djordjevic-Dikic A.D., Dobric M.R., Giga V.L., Soldatovic I.A., Vukcevic V. et al. Functional assessment of myocardial bridging with conventional and diastolic fractional flow reserve: vasodilator versus inotropic provocation. J. Am. Heart. Assoc. 2021; 10 (13): e020597. DOI: 10.1161/JAHA.120.020597
  26. Darenskiy D.I., Gramovich V.V., Zharova E.A., Ansheles A.A., Sergienko V.B., Mitroshkin M.G. et al. Comparison of diagnostic values of instantaneous wave-free ratio and fractional flow reserve with noninvasive methods for evaluating myocardial ischemia in assessment of the functional significance of intermediate coronary stenoses in patients with chronic ischemic heart disease. Kardiologiia. 2017; 57 (8): 11–9 (in Russ.). DOI: 10.18087/cardio.2017.8.10012
  27. Tarantini G., Migliore F., Cademartiri F., Fraccaro C., Iliceto S. Left anterior descending artery myocardial bridging: a clinical approach. J. Am. Coll. Cardiol. 2016; 68 (25): 2887–99. DOI: 10.1016/j.jacc.2016.09.973
  28. Tarantini G., Barioli A., Nai Fovino L., Fraccaro C., Masiero G., Iliceto S. et al. Unmasking myocardial bridge-related ischemia by intracoronary functional evaluation. Circ. Cardiovasc. Interv. 2018; 11 (6): e006247. DOI: 10.1161/CIRCINTERVENTIONS.117.006247
  29. Ishii T., Ishikawa Y., Akasaka Y. Myocardial bridge as a structure of "double-edged sword" for the coronary artery. Ann. Vasc. Dis. 2014; 7 (2): 99–108. DOI: 10.3400/avd.ra.14-00037
  30. Wong D.T., Ko B.S., Cameron J.D., Nerlekar N., Leung M.C., Malaiapan Y. et al. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J. Am. Coll. Cardiol. 2013; 61 (12): 1271–9. DOI: 10.1016/j.jacc.2012.12.029
  31. Li Y., Yu M., Zhang J., Li M., Lu Z., Wei M. Noninvasive imaging of myocardial bridge by coronary computed tomography angiography: the value of transluminal attenuation gradient to predict significant dynamic compression. Eur. Radiol. 2017; 27 (5): 1971–9. DOI: 10.1007/s00330-016-4544-7
  32. Yu M., Zhang Y., Li Y., Li M., Li W., Zhang J. Assessment of myocardial bridge by cardiac CT: intracoronary transluminal attenuation gradient derived from diastolic phase predicts systolic compression. Korean J. Radiol. 2017; 18 (4): 655–63. DOI: 10.3348/kjr.2017.18.4.655
  33. Monroy-Gonzalez A.G., Alexanderson-Rosas E., Prakken N.H.J., Juarez-Orozco L.E., Walls-Laguarda L., Berrios-Barcenas E.A. et al. Myocardial bridging of the left anterior descending coronary artery is associated with reduced myocardial perfusion reserve: a 13N-ammonia PET study. Int. J. Cardiovasc. Imaging. 2019; 35 (2): 375–82. DOI: 10.1007/s10554-018-1460-8
  34. Yun C.H., Hung C.L., Wen M.S., Wan Y.L., So A. CT assessment of myocardial perfusion and fractional flow reserve in coronary artery disease: a review of current clinical evidence and recent developments. Korean J. Radiol. 2021; 22 (11): 1749–63. DOI: 10.3348/kjr.2020.1277
  35. Omarov Yu.A., Sukhinina T.S., Veselova T.N., Shakhnovich R.M., Zhukova N.S., Merkulova I.N. et al. Possibilities of stress computed tomography myocardial perfusion imaging in the diagnosis of ischemic heart disease. Kardiologiia. 2020; 60 (10): 122–31 (in Russ.). DOI: 10.18087/cardio.2020.10.n1028
  36. Boldyreva K.M., Makarenko V.N., Shurupova I.V., Rychina I.E., Dorofeev A.V., Aslanidis I.P. Current state of myocardial perfusion assessed by computed tomography. Creative Cardiology. 2022; 16 (2): 134–49 (in Russ.). DOI: 10.24022/1997-3187-2022-16-2-134-149
  37. Lim J.W., Lee H., Her K., Park H.W., Shin K.E. Myocardial CT perfusion imaging for pre- and postoperative evaluation of myocardial ischemia in a patient with myocardial bridging: a case report. Medicine (Baltimore). 2017; 96 (42): e8277. DOI: 10.1097/MD.0000000000008277
  38. Veselova T.N., Ternovoy S.K., Chepovskiy A.M., Borisenko V.V., Gavrilov A.V., Blagosklonova E.R. et al. Evaluation of the fractional flow reserve by computer tomography data: comparison of the calculated parameters with the results of invasive measurements. Kardiologiia. 2021; 61 (7): 28–35 (in Russ.). DOI: 10.18087/cardio.2021.7.n1540
  39. Agasthi P., Kanmanthareddy A., Khalil C., Egbuche O., Yarlagadda V., Sachdeva R. et al. Comparison of computed tomography derived fractional flow reserve to invasive fractional flow reserve in diagnosis of functional coronary stenosis: a meta-analysis. Sci Rep. 2018; 8 (1): 11535. DOI: 10.1038/s41598-018-29910-9
  40. Norgaard B.L., Terkelsen C.J., Mathiassen O.N., Grove E.L., Bo/tker H.E., Parner E. et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. J. Am. Coll. Cardiol. 2018; 72 (18): 2123–34. DOI: 10.1016/j.jacc.2018.07.043
  41. Chen J., Wetzel L.H., Pope K.L., Meek L.J., Rosamond T., Walker C.M. FFRCT: current status. Am. J. Roentgenol. 2021; 216 (3): 640–8. DOI: 10.2214/AJR.20.23332
  42. Hakeem A., Cilingiroglu M., Leesar M.A. Hemodynamic and intravascular ultrasound assessment of myocardial bridging: fractional flow reserve paradox with dobutamine versus adenosine. Catheter. Cardiovasc. Interv. 2010; 75 (2): 229–36. DOI: 10.1002/ccd.22237
  43. Zhou F., Wang Y.N., Schoepf U.J., Tesche C., Tang C.X., Zhou C.S. et al. Diagnostic performance of machine learning based CT-FFR in detecting ischemia in myocardial bridging and concomitant proximal atherosclerotic disease. Can. J. Cardiol. 2019; 35 (11): 1523–33. DOI: 10.1016/j.cjca.2019.08.026
  44. Yu Y., Yu L., Dai X., Zhang J. CT fractional flow reserve for the diagnosis of myocardial bridgingrelated ischemia: a study using dynamic CT myocardial perfusion imaging as a reference standard. Korean J. Radiol. 2021; 22 (12): 1964–73. DOI: 10.3348/kjr.2021.0043
  45. Zhou F., Tang C.X., Schoepf U.J., Tesche C., Bauer M.J., Jacobs B.E. et al. Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging. Eur. Radiol. 2019; 29 (6): 3017–26. DOI: 10.1007/s00330-018-5811-6
  46. Koo H.J., Yang D.H., Kim Y.H., Kang J.W., Kang S.J., Kweon J. et al. CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. Int. J. Cardiovasc. Imaging. 2016; 32 (Suppl 1): 1–19. DOI: 10.1007/s10554-015-0825-5

About Authors

  • Bektur Sh. Berdibekov, Junior Researcher, Cardiologist; ORCID
  • Svetlana A. Aleksandrova, Cand. Med. Sci., Senior Researcher, Associate Professor; ORCID
  • Naida I. Bulaeva, Cand. Biol. Sci., Senior Researcher, Head of Department, Laboratory, Associate Professor; ORCID
  • Elena Z. Golukhova, Dr. Med. Sci., Professor, Academician of Russian Academy of Sciences, Director; ORCID

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery