Functional methods for assessing coronary blood flow as a predictor of internal thoracic artery to left anterior descending bypass graft failure after coronary surgery
Authors:
Company: Bakoulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russian Federation
For correspondence: Sign in or register.
Type: Reviews
DOI:
For citation: Petrosyan K.V., Merzlyakov V.Yu., Karaev A.V., Gurdzibeev A.B. Functional methods for assessing coronary blood flow as a predictor of internal thoracic artery to left anterior descending bypass graft failure after coronary surgery. Creative Cardiology. 2022; 16 (4): 497–507 (in Russ.). DOI: 10.24022/1997-3187-2022-16-4-497-507
Received / Accepted: 20.06.2022 / 19.12.2022
Keywords: internal thoracic artery bypass graft competitive blood flow ischemic heart disease fractional flow reserve instantaneous wave – free ratio
Abstract
Coronary heart disease occupies a leading place among the most important medical problems of the XXI century. Despite significant progress in understanding and treatment, mortality from cardiovascular diseases in our country in recent years is still on a colossal scale. The decision on the need for myocardial revascularization in the volume of coronary artery bypass grafting is based on the assessment of the severity of coronary artery stenosis by quantitative coronary angiography. The widespread use of the left internal thoracic artery (ITA) as a graft to left anterior descending (LAD) artery has prompted many researchers to think about the influence of various factors on its functional state. The analysis of the causes of the failure of ITA bypass graft, among which the main one is the presence of competitive blood flow from the native artery. According to most researchers, competitive flow is the leading condition for the failure of ITA bypass graft to LAD artery. The frequency of competitive flow correlates with the severity of stenosis and its hemodynamic significance. The article deals with the problem of dysfunction of ITA – LAD bypass graft due to the emergence of competitive blood flow and methods of its prediction using invasive functional tests for various stenoses of the native artery, according to the world literature.References
- Bockeria L.A. Cardiovascular surgery – 2019. Moscow; 2020 (in Russ.).
- Russian Statistical Yearbook. 2021: Moscow; 2021 (in Russ.).
- Tonino P., Fearon W., De Bruyne B., Oldroyd K., Leesar M., Ver Lee P. et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J. Am. Coll. Cardiol. 2010; 55 (25): 2816–21. DOI: 10.1016/j.jacc.2009.11.096
- Pijls N., Fearon W., Tonino P., Siebert U., Ikeno F., Bornschein N. et al. FAME Study Investigators. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J. Am. Coll. Cardiol. 2010; 56 (3): 177–84. DOI: 10.1016/j.jacc.2010.04.012
- Toth G., Hamilos M., Pyxaras S., Mangiacapra F., Nelis O., De Vroey F. et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur. Heart J. 2014; 35 (40): 2831–8. DOI: 10.1093/eurheartj/ehu094
- Takebayashi H., Kobayashi Y., Mintz G.S., Carlier S.G., Fujii K., Yasuda T. et al. Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am. J. Cardiol. 2005; 95: 498–502. DOI: 10.1016/j.amjcard.2004.10.020
- ESC/EACTS guidelines on myocardial revascularization. Russian Journal of Cardiology. 2019; 8: 151–226 (in Russ.). DOI: 10.15829/1560-4071- 2019-8-151-226
- Alekyan B.G., Grigoryan A.M., Staferov A.V., Karapetyan N.G. Roentgen-vascular diagnostics and treatment of cardiovascular diseases in Russian Federation 2018. Russian Journal of Endovascular Surgery. 2019; 6 (2, Special Issue): 5–188 (in Russ.). DOI: 10.24183/2409-4080-2019-6-2s
- Fearon W., Zimmermann F., Bruyne B., Piroth Z., Straten A., Szekely L. et al. Fractional Flow Reserve-Guided PCI as Compared with Coronary Bypass Surgery. N. Engl. J. Med. 2022; 386 (2): 128–37. DOI: 10.1056/NEJMoa2112299
- Zhbanov I.V., Martirosyan A.K., Uryuzhnikov V.V., Kiladze I.Z., Galimov N.M., Revishvili G.A., Shabalkin B.V. Multiple coronary artery bypass surgery using two internal thoracic arteries. Clinical Experimental Surgery. Petrovsky Journal. 2018; 6 (4): 66–74 (in Russ.). DOI: 10.24411/2308- 1198-2018-14010
- Berishvili I.I., Vlasov G.P., Botnar Yu.M., Ignatov V.N., Dydykin S.S., Kireev A.A. Conduits for myocardial revascularization (histomorphological and morphometric comparisons). Angiology and Vascular Surgery. 1997; 3 (2): 105–18 (in Russ.).
- Sims F.M. Discontinuities in the internal elastic lamina: a comparison of coronary and internal mammary arteries. Artery. 1985; 13: 127–43.
- Landymore R.W., Champman D.M. Anatomical studies to support the expanded use of the internal mammary artery graft for myocardial revascularization. Ann. Thorac. Surg. 1987; 44: 4–6.
- Loop F., Lytle B., Cosgrove D.M. Internal-thoracic-artery grafts: biologically better coronary arteries. N. Eng. J. Med. 2004; 351: 2302–9.
- Cohn L.H. Use of Internal mammary artery graft and in-hospital mortality and other adverse outcomes associated with coronary artery bypass surgery. Circulation. 2001; 103: 483–4.
- Loop F., Lytle B., Cosgrove D., Stewart R., Goormastic M., Williams G. et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N. Engl. J. Med. 1986; 314: 1–6.
- Cameron A., Green G., Brogno D., Thornton J. Internal thoracic artery grafts: 20-year clinical follow-up. J. Am. Coll. Cardiol. 1995; 25 (1): 188–92. DOI: 10.1016/0735-1097(94)00332-k
- Tatoulis J., Buxton B., Fuller J. Patencies of 2127 arterial to coronary conduits over 15 years. Ann. Thorac. Surg. 2004; 77 (1): 93–101. DOI: 10.1016/s0003-4975(03)01331-6
- Taggart D. Implications of the 10-year outcomes of the Arterial Revascularization Trial (ART) for multiple arterial grafts during coronary artery bypass graft. Eur. J. Cardiothorac. Surg. 2019; 56 (3): 427–8. DOI: 10.1093/ejcts/ezz174
- Gaudino M., Taggart D., Fremes S. The ROMA trial: why it is needed. Curr. Opin. Cardiol. 2018; 33 (6): 622–6. DOI: 10.1097/HCO. 0000000000000565
- Bockeria L.A., Petrosian K.V., Bockeria O.L., Sobolev A.V., Donakanyan S.A., Golubev E.P. et al. Intraoperative bypass angiography – fouryear observation experience. Russian Journal of Surgery. 2019; 24 (2): 100–7 (in Russ.). DOI: 10.24022/1560-9502-2019-24-2-100-107
- Bockeria L.A., Petrosyan K.V. Intraoperative angiographic assessment of coronary artery bypass surgery results. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2019; 20 (7–8): 610–20 (in Russ.). DOI: 10.24022/1810-0694-2019-20-7- 8-610-620
- Bockeria L.A., Losev V.V., Petrosyan K.V., Bockeria O.L., Karaev A.V. The influence of specific anatomical and histological factorsdetected by intraoperative optical coherent tomography on intermediate and long-term results of the viability of coronary grafts. Russian Journal of Thoracic and Cardiovascular Surgery. 2019; 61 (3): 209–14 (in Russ.). DOI: 10.24022/0236-2791-2019-61-3-209-214
- Sigaev I.Yu., Kazaryan A.V. Causes of dysfunction and ways to protect the internal-mammary-artery graft during primary coronary artery graft surgery. Russian Journal of Thoracic and Cardiovascular Surgery. 2014; 6: 6–11 (in Russ.).
- Nakajima H., Kobayashi J., Toda K., Fujita T., Shimahara Y., Kasahara Y. et al. Angiographic evaluation of flow distribution in sequential and composite arterial grafts for three vessel disease. Eur. J. Cardiothorac. Surg. 2012; 41: 763–9. DOI: 10.1093/ejcts/ezr057
- Nordgaard H., Swillens A., Nordhaug D., Kirkeby-Garstad I., Loo D.V., Vitale N. et al. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA – LAD model. Cardiovasc. Res. 2010; 88 (3): 512–9. DOI: 10.1093/cvr/cvq210
- Bocharov A.V., Popov L.V. Competitive blood flow: definition, biophysical basis, mechanisms of occurrence in clinical practice, clinical and angiographic diagnostic criteria. Clinical Physiology of Circulation. 2021; 18 (2): 165–71 (in Russ.). DOI: 10.24022/1814-6910-2021-18-2-165-171
- Sabik F.J, Blackstone H.A., Gillinov M. Coronary artery bypass graft patency and competitive flow. J. Am. Coll. Cardiol. 2008; 51: 126–8.
- Barner H. Double internal mammary-coronary artery bypass. Arch. Surg. 1974; 109: 627–30. DOI: 10.1001/archsurg.1974.01360050025007
- Geha S., Baue A. Early and late results of coronary revascularization with saphenous vein and internal mammary artery grafts. Am. J. Surg. 1979; 137: 456–63. DOI: 10.1016/0002-9610(79)90114-4
- Karapanos N., Suddendorf H., Li Z., Huebner M., Joyce D., Park S. The impact of competitive flow on distal coronary flow and on graft flow during coronary artery bypass surgery. Interact. Cardiovasc. Thorac. Surg. 2011; 12 (6): 993–7; discussion 997. DOI: 10.1510/icvts.2010.255398
- Ding J., Liu Y., Wang F., Bai F. Impact of competitive flow on hemodynamics in coronary surgery: numerical study of ITA-LAD model. Comput. Math. Methods. Med. 2012; 2012: 356187. DOI: 10.1155/2012/356187
- Demiryapan E., Arisoy F., Dogan P., Kuyumcu M., Ozeke O. Competitive coronary flow between the native left anterior descending artery and left internal mammary artery graft: is it a surrogate angiographic marker of over-or-unnecessary revascularization decision in daily practice? Int. J. Angiol. 2016; 26 (01): 27–31. DOI: 10.1055/s-0036- 1587695
- Sabik III J.F. Should coronary artery bypass grafting be performed in patients with moderate stenosis of the left anterior descending coronary artery? Circulation. 2016; 133: 111–3. DOI: 10.1161/CIRCULATIONAHA.115.020084
- Kim J.E., Koo B.K. Fractional flow reserve: the past, present and future. Korean Circ. J. 2012; 42 (7): 441–6. DOI: 10.4070/kcj.2012.42.7.441
- Smits P., Abdel-Wahab M., Neumann F., Boxmade Klerk B., Lunde K., Schotborgh C. et al. Fractional flow reserve – guided multivessel angioplasty in myocardial infarction. New Engl. J. Med. 2017; 376 (13): 1234–44.
- Pijls N., van Schaardenburgh P., Manoharan G., Boersma E., Bech J., van't Veer M. et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J. Am. Coll. Cardiol. 2007; 49 (21): 2105–11. DOI: 10.1016/j.jacc.2007.01.087
- Carson J., Roobottom C., Alcock R., Nithiarasu P. Computational Instantaneous Wave-Free Ratio (IFR) for patient-specific coronary artery stenoses using 1D network models. Int. J. Numer. Method. Biomed. Eng. 2019; 35 (11): e3255. DOI: 10.1002/cnm.3255
- Wang W., Mao B., Li B., Zhao X., Xu C., Liu Y., Liu J. Numerical simulation of instantaneous wave-free ratio of stenosed coronary artery. Int. J. Comp. Meth. 2019; 16 (03): 1842009.
- Shiono Y., Wada T., Kubo T., Honda K., Takahata M., Shimamura K., Akasaka T. et al. Impact of instantaneous wave-free ratio on graft failure after coronary artery bypass graft surgery. Int. J. Cardiol. 2021; 324: 23–9. DOI: 10.1016/j.ijcard.2020.09.046
- Tolegenuly A., Ordiene R., Mamedov A., Unikas R., Benetis R. Correlation between preoperative coronary artery stenosis severity measured by instantaneous wave-free ratio and intraoperative transit time flow measurement of attached grafts. Medicina (Kaunas). 2020; 56 (12): 714. DOI: 10.3390/medicina56120714
- Bockeria L.A., Petrosyan K.V., Golukhova E.Z., Bockeria O.L., Abrosimov A.V., Mkrtychyan B.T. Direct results of percutaneous coronary intervention in patients with recurrent angina after coronary artery bypass grafting. Creative Cardiology. 2016; 10 (4): 306–16 (in Russ.). DOI: 10.15275/kreatkard.2016.04.05