Human herpesviruses and atherosclerosis.Modern point of view

Authors: E.A. Nikitskaya 1, E.V. Maryukhnich 1, P.P Savvinova 1, N.V. Pinegina 1, A.V. Shpektor 1, E.Yu. Vasilieva 1, L.B. Margolis 2

Company: 1) Cardiology Chair for Post-Diploma Education Faculty of A.I. Evdokimov Moscow State Medical-Stomatological University of Ministry of Health of the Russian Federation; Delegatskaya ulitsa, 20, stroenie 1, Moscow, 127473, Russian Federation; 2) The Eunice Kennedy Shriver National Institute of Child Health and Human Development; Center Drive, Building 31, Bethesda, United States


DOI: https://doi.org/10.15275/kreatkard.2015.02.05

For citation: E.A. Nikitskaya, E.V. Maryukhnich, P.P SavvinovaHuman herpesviruses and atherosclerosis. Modern point of viewCreative Cardiology. 2015; 2: 54-61

Keywords: atherosclerosis coronary artery disease human herpesviruses polymerase chain reaction

Full text:  

 

Abstract

Atherosclerosis is a complicated process, involving genetic and methabolic factors, associated with the interactions between cells of many different types. Mechanisms of plaque destabilization are still not clear and require new investigations. Connections between human herpes viruses (HHV) and atherosclerosis were suggested in 19th century. However, in spite of many studies on the do not know wether HHV play a role in atherosclerosis development and progression since the results of these studies are highly controversial. According to some studies the relations between HHV infection and atherosclerosis exist, but other studies do not confirm this result. Also, controvercial data were published on the prevalence of HHV in atherosclerosis: this prevalence varied 0 to 100%. No doubt that we need further investigations that include determination of the latency/activity of HHV not only in tissue but also in blood of the patients with atherosclerosis.

References

1. Murray C.J., Lopez A.D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet. 1997; 349: 1498–504. 2. Montalescot G., Sechtem U. Stable Coronary Artery Disease (Management of) ESC Clinical Practice Guidelines; 2013. 3. Finn A.F., Nakano M., Narula J., Kolodgie F.D., Renu Virmani R. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1282–92. 4. Hartvigsen K., Chou M.Y., Hansen L.F. et al. The role of innate immunity in atherogenesis. J. Lipid. Res. 2009; 50 (Suppl.): 388. 5. De Palma R., Del Galdo F., Abbate G. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation. 2006; 113: 640–6. 6. Ferrante G., Nakano M., Virmani R., Crea F. et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010; 112: 213–28. 7. Gilbert A., Lion G. Arterites infectieuses experimentales. C. R. Hebd. Seances. Mem. Soc. Biol. 1889; 41: 583–4. 8. Campbell L.A., Yaraei K., Van Lenten B., Chait A., Blessing E., Kuo C.C. The acute phase reactant response to respiratory infection with Chlamydia pneumoniae: implications for the pathogenesis of atherosclerosis. Microbes Infect. 2010; 12: 598–606. 9. Ford P.J., Gemmell E., Timms P., Chan A., Preston F.M., Seymour G.J. Anti-P. gingivalis response correlates with atherosclerosis. J. Dent. Res. 2007; 86: 35–40. 10. Kowalski M. Helicobacter pylori (H. pylori) infection in coronary artery disease: influence of H. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection of H. pylori specific DNA in human coronary atherosclerotic plaque. J. Physiol. Pharmacol. 2001; 52: 3–31. 11. Alyan O., Kacmaz F., Ozdemir O. Hepatitis C infection is associated with increased coronary artery atherosclerosis defined by modified Reardon severity score system. Circulation. 2008; 72: 1960–5. 12. Frenkel N., Schirmer E., Wyatt L., Katsofanas G., Roffman E., Danovich R., June C. Isolation of a new herpesvirus from human CD41 T cells. Proc. Natl. Acad. Sci. USA. 1990; 87: 748–52. 13. Ryan K.J., Ray C.G. Sherris Medical Microbiology (4th ed.). McGraw Hill; 2004. 14. Adams M.J., Carstens E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2012; 157 (7): 1411–22. 15. Whitley R.J. Herpesviruses. In: Baron S. (ed). Medical Microbiology. 4th ed. Univ of Texas Medical Branch; 1996. 16. Murray P.R., Rosenthal K.S., Pfaller M.A. Medical Microbiology. 5th ed. Elsevier Mosby; 2005. 17. Fabricant C.G., Fabricant J., Minick C.R., Litrenta M.M. Herpesvirus-induced atherosclerosis in chickens. Fed. Proc. 1983; 42: 2476–9. 18. Chu A., Prasad J. Antagonism by IL-4 and IL-10 of endotoxin-induced tissue factor activation in monocytic THP-1 cells: activating role of CD14 ligation. J. Surg. Res. 1998; 80: 80–7. 19. Hajjar D. Viral pathogenesis of atherosclerosis: impact of molecular mimicry and viral genes. Am. J. Pathol. 1991; 139: 1195–211. 20. DuRose J., Li J., Chien S., Spector D. Infection of vascular endothelial cells with human cytomegalovirus under fluid shear stress reveals preferential entry and spread of virus in flow conditions simulating atheroprone regions of the artery. J. Virol. 2012; 24: 13745–55. 21. Melnick J.L., Hu C. Cytomegalovirus DNA in arterial walls of patients with atherosclerosis. J. Med. Virol. 1994; 42 (2): 170–4. 22. Shi Y., Tokunaga O. Herpesvirus HSV-1, EBV and CMV infections in atherosclerotic compared with non-atherosclerotic aortic tissue. Pathol. Int. 2002; 52 (1): 31–9. 23. Radke P.W., Merkelbach-Bruse S. Direct evidence of cytomegalovirus in coronary atheromas of patients with advance coronary heart artery disease. Med. Klin. (Munich). 2001; 96 (3): 129–34. 24. Virok D., Kis Z., Kari L. Chlamydophila pneumoniae and human cytomegalovirus in atherosclerotic carotid plaques-combined presence and possible interactions. Acta Microbiol. Immunol. Hung. 2006; 53 (1): 35–50. 25. Xenaki E., Hassoulas J. Detection of cytomegalovirus in atherosclerotic plaques and nonatherosclerotic arteries. Angiology. 2009; 60 (4): 504–8. 26. Westphal M., Lautenschlager I. Cytomegalovirus and proliferative signals in the vascular wall of CABG patients. Thorac. Cardiovasc. Surg. 2006; 54 (4): 219–26. 27. Kotronias D., Kapranos N. Herpes simplex virus as a determinant risk factor for coronary artery atherosclerosis and myocardial infarction. In Vivo. 2005; 19 (2): 351–7. 28. Schlitt A., Blankenberg S., Weise K., Gärtner B.C., Mehrer T., Peetz D., Meyer J., Darius H., Rupprecht H.J. Herpesvirus DNA (Epstein–Barr virus, herpes simplex virus, cytomegalovirus) in circulating monocytes of patients with coronary artery disease. Acta Cardiol. 2005; 60 (6): 605–10. 29. Voorend M., van der Ven A.J. Limited role for C. pneumoniae, CMV and HSV-1 in cerebral large and small vessel atherosclerosis. Open Neurol. J. 2008; 2: 39–44. 30. Reszka E., Jegier B. Detection of infectious agents by polymerase chain reaction in human aortic wall. Cardiovasc. Pathol. 2008; 17 (5): 297–302. 31. Grose C., Adams H.P. Reassessing the link between herpes zoster ophthalmicus and stroke. Expert Rev. Anti Infect. Ther. 2014; 12 (5): 527–30. 32. Ibrahim A.I., Obeid M.T. Detection of herpes simplex virus, cytomegalovirus and Epstein–Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J. Clin. Virol. 2005; 32 (1): 29–32. 33. Nagel M.A., Choe A., Khmeleva N., Overton L., Rempel A., Wyborny A., Traktinskiy I., Gilden D. Search for varicella zoster virus and herpes simplex virus-1 in normal human cerebral arteries. J. Neurovirol. 2013; 19 (2): 181–5. 34. Kaklikkaya I., Kaklikkaya N. Detection of human herpesvirus 6 DNA but not human herpesvirus 7 or 8 DNA in atherosclerotic and nonatherosclerotic vascular tissues. Heart Surg. Forum. 2010; 13 (5): 345–9. 35. Ye D., Nichols T.C. Absence of human herpesvirus 8 genomes in coronary atherosclerosis in immunocompetent patients. Am. J. Cardiol. 1997; 79 (9): 1245–7. 36. Magnoni M., Malnati M., Cristell N., Coli S., Russo D., Ruotolo G., Cianflone D., Alfieri O., Lusso P., Maseri A. Molecular study of human herpesvirus 6 and 8 involvement in coronary atherosclerosis and coronary instability. J. Med. Virol. 2012; 84 (12): 1961–6. 37. Yi L., Wang D.X., Feng Z.J. Detection of human cytomegalovirus in atherosclerotic carotid arteries in humans. J. Formos. Med. Assoc. 2008; 107 (10): 774–81. 38. Roizman B., Whitley R.J. An inquiry into the molecular basis of HSV latency and reactivation. Annu. Rev. Microbiol. 2013; 67: 355–74. 39. Yasuda C., Okada K., Ohnari N., Akamatsu N., Tsuji S. Cerebral infarction and intracranial aneurysm related to the reactivation of varicella zoster virus in a Japanese acquired immunodeficiency syndrome (AIDS) patient. Rinsho Shinkeigaku. 2013; 53 (9): 701–5. 40. Schädlich H.J., Nekic M., Jeske J., Karbe H. Intrathecal humoral immune reaction in zoster infections. J. Neurol. Sci. 1991; 103 (1): 101–4. 41. Hagiwara N., Toyoda K. Lack of association between infectious burden and carotid atherosclerosis in Japanese patients. J. Stroke Cerebrovasc. Dis. 2007; 16 (4): 145–52. 42. Zhou Y.F., Guetta E., Yu Z.X. et al. Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells. J. Clin. Invest. 1996; 98: 2129–38. 43. Burnett M.S., Durrani S., Stabile E. et al. Murine cytomegalovirus infection increases aortic expression of proatherosclerosis genes. Circulation. 2004; 109: 893–7. 44. Grivel J.C., Ivanova O., Pinegina N., Blank P.S., Shpektor A., Margolis L.B., Vasilieva E. Activation of T lymphocytes in atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol. 2011; 31 (12): 2929–37. 45. Morré S.A., Stooker W., Lagrand W.K., van den Brule A.J.C., Niessen H.W.M. Microorganisms in the aetiology of atherosclerosis. J. Clin. Pathol. 2000; 53: 647–54. 46. Vercellotti G.M. Effects of viral activation of the vessel wall on inflammation and thrombosis. Blood Coagul. Fibrinolysis. 1998; 2: S3–6. 47. Flamand L., Lautenschlager I., Krueger G., Dharam A. (eds) Human herpesviruses HHV-6A, HHV-6B & HHV-7: Diagnosis and clinical management. Elsevier Science; 2014. 48. Ingianni A., Madeddu M.A., Carta F., Reina A., Lai C., Pompei R. Epidemiology of human herpesvirus type 8 infection in cardiopathic patients. Online J. Biol. Sci. 2009; 9 (2): 36–9. 49. Никитская Е.А., Гривель Ж.-Ш., Иванова О.И., Лебедева А.М., Шпектор А.В., Марголис Л.Б., Васильева Е.Ю. Исследование герпесвирус- ной ДНК в коронарных артериях пациентов, умерших в острой стадии инфаркта миокарда. Креативная кардиология. 2014; 4: 52–64 / Nikitskaya E.A., Grivel'J.-C., Ivanova O.I., Lebedeva A.M., Shpektor A.V., Margolis L.B., Vasil'eva E.Yu. Detection of human herpes viruses DNA in coronary artery in patients who died in acute stage of myocardial infarction. Kreativnaya Kardiologiya. 2014; 4: 52–64 (in Russian). 50. Benditt E.A, Barrett T., McDougall J.K. Viruses in the etiology of atherosclerosis. Proc. Natl. Acad. Sci. USA. 1983; 80: 6386–9.

Chief Editor

Leo A. Bockeria, MD, PhD, DSc, Professor, Academician of Russian Academy of Sciences, President of Bakoulev National Medical Research Center for Cardiovascular Surgery